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What’s up, doc ?



χPT

χiral Perturbation Theory
{ effective field theory of QCD

perturbation around mq = p = 0

I left and right quark chiralities (≡ helicities) decouple

I chiral symmetry SUL(Nf )⊗ SUR(Nf ) spontaneously broken
→ π,K , η Goldstone bosons

I observables expanded in powers of mq and p

Chiral symmetry yields the structure of the interactions
but not the values of the couplings

ππ-scattering amplitude vanish for
mq, p → 0

Aππ = a · s + b ·M2
π + O(p4)

but value of a and b ?
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Lattice and χPT

Overlap with lattice ?

I Light masses for χPT, but unknown constants

I Heavier masses for lattice, but extrapolation

mq

X

mphys

polynomial

chiral

lattice
In particular, strong

impact of chiral
logarithms at NLO

4M2
π log

M2
π

µ2

not seen in lattice
simulations



Recent progress (1)

π,K , η only

I Two-loop computations for almost all quantities in full QCD,
some in partially-quenched QCD

I Problem with NNLO low-energy constants (more than 100 !)
Model-dependence of the results ?

I Low-energy constants for electromagnetic and weak radiative
processes using resonance saturation

πN

I Better control of analytic structure of results
(new regularisation schemes)

I Investigation of chiral extrapolation from lattice to real world
(mass of the nucleon, form factors)



Recent progress (2)

NN and few-nucleon systems

I chiral potential inside a Lippmann-Schwinger equation
→ bound states out of weak coupling description
→ cut-off to separate low and high energies

I Relation with NN potential and bound states on the lattice
→ discussions about the “best” implementation of χPT

Finite-volume effects

I Lellouch-Lüscher formula and generalisations

M2
X (L)−M2

X (∞) =

∫
dνK (ν) T forward

Xπ→Xπ(ν) + O(exp(−L))

I ε regime: large pion in a small box 1/Mπ � L � 1/Fπ
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From 2 to 3 massless flavours

Σ(2; ms) = lim
mu ,md→0

−〈0|ūu|0〉


Σ(3) = Σ(2; 0)

Σ(2χ) = Σ(2; mphys
s )

Σ(2lat) = Σ(2;∞)
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i

∫
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SDG,L.Girlanda,J.Stern
Σ(2χ) contains

I A “genuine” condensate Σ(3)

I An “induced” condensate
ms × (scalar Nc -suppressed)

effect from sea ss̄-pairs

s

s

u

u



From K`4, i.e., ππ scattering data

(mu + md)Σ(2χ)

F 2
πM2

π

= 0.81± 0.08 SDG,L.Girlanda,N.Fuchs,J.Stern

. . . or larger G.Colangelo,J.Gasser,H.Leutwyler

〈ūu〉|mu,d=0,ms phys︸ ︷︷ ︸ = 〈ūu〉|mu,d,s=0︸ ︷︷ ︸ + ms〈(ūu)(s̄s)〉+ . . .
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Large Zweig-rule violation

Strange sea quarks important
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Large Zweig-rule violation

Strange sea quarks important



From K`4, i.e., ππ scattering data

(mu + md)Σ(2χ)

F 2
πM2

π

= 0.81± 0.08 SDG,L.Girlanda,N.Fuchs,J.Stern

. . . or larger G.Colangelo,J.Gasser,H.Leutwyler
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Consequences for three-flavour chiral series

F 2
πM2

π = 2mΣ(3) + 64m(ms + 2m)B2
0∆L6 + 64m2B2

0∆L8 + O(m2
q)

I B0 = − limmu ,md ,ms→0〈ūu〉/F 2
π m = mu = md

I ∆L8 = L8(Mρ) + 0.20 · 10−3 = O(p4) LEC + χ log

I ∆L6 = L6(Mρ) + 0.26 · 10−3 = O(p4) LEC + χ log

L6 is the awesome guy here

I Enhanced by ms , related to 〈(ūu)(s̄s)〉. . .
I . . . and “guestimated” assuming Zweig rule in scalar sector

Possible numerical competition between O(p2) and O(p4)
2mB0 = M2

π + . . . may not be a good approximation
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No decisive evidence to choose between the scenarios

I In the scalar sector, Zweig rule and large-Nc badly violated

I Large dispersive estimates of 〈(ūu)(s̄s)〉
I πK scattering slightly favours significant role of sea ss̄ pairs

B.Moussallam;SDG;P.Büttiker

Large effect of ss̄ pairs =⇒ difficult convergence of SU(3) series

I Assume overall convergence for a subset of observables

I Leave open a numerical competition between LO and NLO

I Use only chiral couplings of the Lagrangian (F0,B0, Li )

I Reexpress them in terms of M2
π,F 2

π . . . only if physical
motivation (nonanalytic poles, cuts, unitarity. . . )

M2
π 6= 2mB0 ! SDG,L.Girlanda,N.Fuchs,J.Stern
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Three-flavour unquenched lattice

Idea: Unquenched lattice
to probe ms -enhanced Zweig-rule violating effects

Real QCD Lattice
2+1 flavours (m,m,ms) (m̃, m̃,ms) m ≤ m̃ ≤ ms

Observables X X̃ F 2
π ,F 2

K ,F 2
πM2

π,F 2
KM2

K

Real QCD: from chiral series, up to (small) NNLO remainders

O(p4) LECs L4,5,6,8 = F
[
X (3) =

2mΣ(3)

F 2
πM2

π

,Z (3) =
F 2

0

F 2
π

, r =
ms

m

]

Lattice: additional parameter: q =
m̃

ms
∼ “1/r̃ ′′
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I Infinite volume, continuum limit, no NNLO remainders

I Zweig-rule violation in 0++:
from none (full) to almost maximal (dotted)

I Varying r = ms/m: 20 (thin) and 30 (thick)

. . . and similar results for kaons



Ratios of interest

What about finite-volume corrections ? LO computed within χPT
For L ∼ 2.5 fm, and any Zweig-rule violation due to ss̄,

finite-volume corrections to F 2
πM2
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The end of a review ?



Conclusions

I Two chiral limits
Nf = 3 : mu,md ,ms → 0
Nf = 2χ : mu,md → 0,ms physical

Σ(2χ) = Σ(3) + ms〈(ūu)(s̄s)〉+ O(m2
s )

I Role of sea ss̄-pairs ↔ Nf -dependence of order parameters
↔ Zweig rule violation in scalar sector

I Numerical competition between LO and NLO in chiral series
=⇒ Care required to deal with 3-flavour chiral expansion

I No direct experimental information on size of the effect (yet!)
=⇒ Lattice simulations with three dynamical flavours

e.g., dependence of hadron observables on quark masses

I Finite-volume effects controlled for sufficiently large volumes

Be careful with lattice extrapolations to light masses
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