Chiral perturbation theory and lattice *a review* ?

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, Orsay (France)

June 7 2005

Contents

Lattice and χPT

The chiral structures of QCD vacuum

Three-flavour chiral extrapolations

Relevance of lattice simulations

hep-ph/0410233

L.Girlanda, N.Fuchs, J.Stern

What's up, doc ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

$\chi \mathbf{PT}$

 χ iral Perturbation Theory { effective field theory of QCD perturbation around $m_q = p = 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- left and right quark chiralities (\equiv helicities) decouple
- chiral symmetry $SU_L(N_f) \otimes SU_R(N_f)$ spontaneously broken $\rightarrow \pi, K, \eta$ Goldstone bosons
- observables expanded in powers of m_a and p

$\chi P I$

 χ iral Perturbation Theory { effective field theory of QCD perturbation around $m_q = p = 0$

- left and right quark chiralities (\equiv helicities) decouple
- chiral symmetry $SU_L(N_f) \otimes SU_R(N_f)$ spontaneously broken $\rightarrow \pi, K, \eta$ Goldstone bosons
- observables expanded in powers of m_a and p

Chiral symmetry yields the structure of the interactions but not the values of the couplings

 $\pi\pi$ -scattering amplitude vanish for $m_{\pi} p \rightarrow 0$

$$A_{\pi\pi} = a \cdot s + b \cdot M_{\pi}^2 + O(p^4)$$

but value of a and b?

Lattice and χPT

Overlap with lattice ?

- Light masses for χ PT, but unknown constants
- Heavier masses for lattice, but extrapolation

In particular, strong impact of *chiral logarithms* at NLO

$$4M_{\pi}^2\log\frac{M_{\pi}^2}{\mu^2}$$

not seen in lattice simulations

Recent progress (1)

$\pi, \mathbf{K}, \eta \text{ only }$

- Two-loop computations for almost all quantities in full QCD, some in partially-quenched QCD
- Problem with NNLO low-energy constants (more than 100 !) Model-dependence of the results ?
- Low-energy constants for electromagnetic and weak radiative processes using resonance saturation

πN

- Better control of analytic structure of results (new regularisation schemes)
- Investigation of chiral extrapolation from lattice to real world (mass of the nucleon, form factors)

Recent progress (2)

NN and few-nucleon systems

- chiral potential inside a Lippmann-Schwinger equation
 - \rightarrow bound states out of weak coupling description
 - \rightarrow cut-off to separate low and high energies
- ▶ Relation with *NN* potential and bound states on the lattice → discussions about the "best" implementation of χ PT

Finite-volume effects

Lellouch-Lüscher formula and generalisations

$$M_X^2(L) - M_X^2(\infty) = \int d\nu K(\nu) \ T_{X\pi o X\pi}^{ ext{forward}}(\nu) + O(\exp(-L))$$

• ϵ regime: large pion in a small box $1/M_{\pi} \gg L \gg 1/F_{\pi}$

Advertisement

Three chiral limits of interest

$$m_u, m_d \rightarrow 0$$

 $egin{array}{lll} N_f = 3 & : & m_s
ightarrow 0 \ N_f = 2^{\chi} & : & m_s \ {
m physical} \ N_f = 2^{
m lat} & : & {
m no \ dynamical} \ s \end{array}$

Three chiral limits of interest

Two versions $N_f = 2^{\chi}$: π only(few param. & processes)of χ PT $N_f = 3$: π, K, η (more param. & processes)

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2^{\chi}) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2^{\chi}) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

<□ > < @ > < E > < E > E のQ @

$$\Sigma(2; m_s) = \Sigma(2; 0) + m_s \frac{\partial \Sigma(2; m_s)}{\partial m_s} + O(m_s^2)$$

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) = \Sigma(2; 0) \\ \Sigma(2^{\chi}) = \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) = \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s^{\text{phys}} \lim_{m_u, m_d \to 0} i \int d^4 x \ \langle 0 | \bar{u} u(x) \, \bar{s} s(0) | 0 \rangle + O(m_s^2)$$

<□ > < @ > < E > < E > E のQ @

$$\Sigma(2; m_s) = \lim_{m_u, m_d \to 0} -\langle 0 | \bar{u} u | 0 \rangle \qquad \begin{cases} \Sigma(3) &= \Sigma(2; 0) \\ \Sigma(2^{\chi}) &= \Sigma(2; m_s^{\text{phys}}) \\ \Sigma(2^{\text{lat}}) &= \Sigma(2; \infty) \end{cases}$$

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s^{\text{phys}} \lim_{m_u, m_d \to 0} i \int d^4 x \ \langle 0 | \bar{u} u(x) \, \bar{s} s(0) | 0 \rangle + O(m_s^2)$$

 $\Sigma(2^{\chi})$ contains

- A "genuine" condensate Σ(3)
- An "induced" condensate
 m_s × (scalar N_c-suppressed)
 effect from sea ss-pairs

SDG, L. Girlanda, J. Stern

From $K_{\ell 4}$, i.e., $\pi \pi$ scattering data $\frac{(m_u + m_d)\Sigma(2^{\chi})}{F_{\pi}^2 M_{\pi}^2} = 0.81 \pm 0.08 \quad \text{SDG,L.Girlanda,N.Fuchs,J.Stern}$... or larger G.Colangelo,J.Gasser,H.Leutwyler

 $\begin{array}{l} \mbox{From } {\cal K}_{\ell 4}, \mbox{ i.e., } \pi \pi \mbox{ scattering data} \\ \hline $(m_u + m_d) \Sigma(2^{\chi})$ \\ \hline $F_{\pi}^2 M_{\pi}^2$ \\ $\dots \mbox{ or larger}$ \\ \hline $G.Colangelo, J.Gasser, H.Leutwyler$ \\ \end{array}$

$$\underbrace{\frac{\langle \bar{u}u \rangle|_{m_{u,d}=0,m_s \text{ phys}}}_{\text{sizeable }\Sigma(2^{\chi})}}_{\text{sizeable }\Sigma(2^{\chi})} = \underbrace{\frac{\langle \bar{u}u \rangle|_{m_{u,d,s}=0}}{\Sigma(3)}}_{\Sigma(3)} + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + \dots$$

From $K_{\ell 4}$, i.e., $\pi\pi$ scattering data $\frac{(m_u + m_d)\Sigma(2^{\chi})}{F_{\pi}^2 M_{\pi}^2} = 0.81 \pm 0.08 \quad \text{SDG,L.Girlanda,N.Fuchs,J.Stern} \\ \dots \text{ or larger} \quad \text{G.Colangelo,J.Gasser,H.Leutwyler}$ $\underbrace{\langle \bar{u}u \rangle|_{m_{u,d}=0,m_s \text{ phys}}}_{(\bar{u}u)|_{m_{u,d,s}=0}} + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + \dots$ sizeable $\Sigma(2^{\chi})$ $\Sigma(3)$ $\Sigma(m_s)$ $\Sigma(2^{\chi})$ Σ(3) mphys 0 m

From $K_{\ell 4}$, i.e., $\pi \pi$ scattering data $\frac{(m_u + m_d)\Sigma(2^{\chi})}{F_{\pi}^2 M_{\pi}^2} = 0.81 \pm 0.08 \quad \text{SDG,L.Girlanda,N.Fuchs,J.Stern}$... or larger G.Colangelo,J.Gasser,H.Leutwyler

| ◆ □ ▶ ◆ 個 ▶ ◆ 目 ▶ ◆ 目 ▶ ● ④ ヘ ⊙

From $K_{\ell 4}$, i.e., $\pi \pi$ scattering data $\frac{(m_u + m_d)\Sigma(2^{\chi})}{F_{\pi}^2 M_{\pi}^2} = 0.81 \pm 0.08 \qquad \text{SDG,L.Girlanda,N.Fuchs,J.Stern}$ G.Colangelo,J.Gasser,H.Leutwyler

Consequences for three-flavour chiral series

 $F_{\pi}^2 M_{\pi}^2 = 2m\Sigma(3) + 64m(m_s + 2m)B_0^2 \Delta L_6 + 64m^2 B_0^2 \Delta L_8 + O(m_q^2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

►
$$B_0 = -\lim_{m_u, m_d, m_s \to 0} \langle \bar{u}u \rangle / F_\pi^2$$
 $m = m_u = m_d$
► $\Delta L_8 = L_8(M_\rho) + 0.20 \cdot 10^{-3} = O(p^4) \text{ LEC} + \chi \log p^4$

•
$$\Delta L_6 = L_6(M_{\rho}) + 0.26 \cdot 10^{-3} = O(p^4) \text{ LEC} + \chi \log^{-3}$$

Consequences for three-flavour chiral series

 $F_{\pi}^{2}M_{\pi}^{2} = 2m\Sigma(3) + 64m(m_{s} + 2m)B_{0}^{2}\Delta L_{6} + 64m^{2}B_{0}^{2}\Delta L_{8} + O(m_{q}^{2})$

►
$$B_0 = -\lim_{m_u, m_d, m_s \to 0} \langle \bar{u}u \rangle / F_\pi^2$$
 $m = m_u = m_d$
► $\Delta L_8 = L_8(M_\rho) + 0.20 \cdot 10^{-3} = O(p^4)$ LEC + $\chi \log d$

•
$$\Delta L_6 = L_6(M_{\rho}) + 0.26 \cdot 10^{-3} = O(\rho^4) \text{ LEC} + \chi \log^4$$

 L_6 is the awesome guy here

- Enhanced by m_s , related to $\langle (\bar{u}u)(\bar{s}s) \rangle$...
- ...and "guestimated" assuming Zweig rule in scalar sector

Possible numerical competition between $O(p^2)$ and $O(p^4)$ $2mB_0 = M_{\pi}^2 + \ldots$ may not be a good approximation No decisive evidence to choose between the scenarios

- In the scalar sector, Zweig rule and large- N_c badly violated
- Large dispersive estimates of $\langle (\bar{u}u)(\bar{s}s) \rangle$
- πK scattering slightly favours significant role of sea ss pairs
 B.Moussallam;SDG;P.Büttiker

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

No decisive evidence to choose between the scenarios

- In the scalar sector, Zweig rule and large- N_c badly violated
- Large dispersive estimates of $\langle (\bar{u}u)(\bar{s}s) \rangle$
- πK scattering slightly favours significant role of sea $s\overline{s}$ pairs B.Moussallam;SDG;P.Büttiker

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Large effect of $s\bar{s}$ pairs \implies difficult convergence of SU(3) series

No decisive evidence to choose between the scenarios

- In the scalar sector, Zweig rule and large- N_c badly violated
- Large dispersive estimates of $\langle (\bar{u}u)(\bar{s}s) \rangle$
- πK scattering slightly favours significant role of sea $s\bar{s}$ pairs B.Moussallam;SDG;P.Büttiker

Large effect of $s\bar{s}$ pairs \implies difficult convergence of SU(3) series

- Assume overall convergence for a subset of observables
- Leave open a numerical competition between LO and NLO
- Use only chiral couplings of the Lagrangian (F_0, B_0, L_i)
- ► Reexpress them in terms of M²_π, F²_π... only if physical motivation (nonanalytic poles, cuts, unitarity...)

 $M_{\pi}^2 \neq 2mB_0$! SDG,L.Girlanda,N.Fuchs,J.Stern

1	2	3	4		5	6	7	8	9	10		11	12	13
14		+	+		15	+	+	┢	+	1		16	t	1
17	1	+	+	18		+	+	+	+	+		19	\vdash	t
20	+	+	+	1		21	+	t	+		22		t	t
23	+	+	+	+	24			25	+	26		+	\vdash	t
27	+	+			28	29	30			31	\vdash	┢	⊢	╈
			32	33		┢	+	i.	34		\vdash	1	t	1
		35			1	+	+	36		1			1	
37	38		+	-	1	-	39	+	+	-	+			
40	+	+	+	+		41		┢	┢			42	43	44
45	+	\vdash	+	-	46				47	48	49		⊢	┢
50	1	+	+		51	+	52	53		54	-	1	⊢	t
55	1	┢		56		+	+	⊢	57		+	+	⊢	+
58	+	┢		59		┢	+	┢	┢		60	┢	⊢	+
61	-	+	-	62	-	+	+	+	+		63	-	+	+

Crossword corner

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Three-flavour unquenched lattice

Idea: Unquenched lattice to probe m_s -enhanced Zweig-rule violating effects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Three-flavour unquenched lattice

Idea: Unquenched lattice to probe *m_s*-enhanced Zweig-rule violating effects

 $\begin{array}{ccc} \text{Real QCD} & \text{Lattice} \\ 2+1 \text{ flavours} & (m,m,m_s) & (\tilde{m},\tilde{m},m_s) & m \leq \tilde{m} \leq m_s \\ \text{Observables} & X & \tilde{X} & F_{\pi}^2, F_{\kappa}^2, F_{\pi}^2 M_{\pi}^2, F_{\kappa}^2 M_{\kappa}^2 \end{array}$

Three-flavour unquenched lattice

Idea: Unquenched lattice to probe m_s -enhanced Zweig-rule violating effects

 $\begin{array}{ccc} & \text{Real QCD} & \text{Lattice} \\ 2+1 \text{ flavours} & (m,m,m_s) & (\tilde{m},\tilde{m},m_s) & m \leq \tilde{m} \leq m_s \\ \text{Observables} & X & \tilde{X} & F_{\pi}^2, F_{K}^2, F_{\pi}^2 M_{\pi}^2, F_{K}^2 M_{K}^2 \end{array}$

Real QCD: from chiral series, up to (small) NNLO remainders

$$O(p^4) \text{ LECs } L_{4,5,6,8} = \mathcal{F}\left[X(3) = \frac{2m\Sigma(3)}{F_{\pi}^2 M_{\pi}^2}, Z(3) = \frac{F_0^2}{F_{\pi}^2}, r = \frac{m_s}{m}\right]$$

Lattice: additional parameter: $q = {{\widetilde m}\over m_s} \sim ~`'1/{\widetilde r}''$

- Infinite volume, continuum limit, no NNLO remainders
- Zweig-rule violation in 0⁺⁺: from none (full) to almost maximal (dotted)
- Varying $r = m_s/m$: 20 (thin) and 30 (thick)

... and similar results for kaons

Ratios of interest

What about finite-volume corrections ? LO computed within χ PT For $L \sim 2.5$ fm, and any Zweig-rule violation due to $s\bar{s}$, finite-volume corrections to $F_{\pi}^2 M_{\pi}^2$ and $F_K^2 M_K^2 < 10\%$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ratios of interest

What about finite-volume corrections ? LO computed within χ PT For $L \sim 2.5$ fm, and any Zweig-rule violation due to $s\bar{s}$, finite-volume corrections to $F_{\pi}^2 M_{\pi}^2$ and $F_{\kappa}^2 M_{\kappa}^2 < 10\%$

The end of a review ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Two chiral limits

 $egin{aligned} N_f &= 3: m_u, m_d, m_s
ightarrow 0 \ N_f &= 2^{\chi}: m_u, m_d
ightarrow 0, m_s \ \end{aligned}$ physical

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$

• Two chiral limits $N_f = 3: m_u, m_d$ $N_f = 2^{\chi}: m_u, m_d$

 $N_f = 3: m_u, m_d, m_s \rightarrow 0$ $N_f = 2^{\chi}: m_u, m_d \rightarrow 0, m_s$ physical

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$$

► Role of sea ss̄-pairs ↔ N_f-dependence of order parameters ↔ Zweig rule violation in scalar sector

► Two chiral limits $egin{array}{ll} N_f=3:m_u,m_d,m_s
ightarrow 0\ N_f=2^\chi:m_u,m_d
ightarrow 0,m_s$ physical

 $\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$

- ► Role of sea $s\bar{s}$ -pairs $\leftrightarrow N_f$ -dependence of order parameters \leftrightarrow Zweig rule violation in scalar sector
- Numerical competition between LO and NLO in chiral series
 ⇒ Care required to deal with 3-flavour chiral expansion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► Two chiral limits $egin{array}{ll} N_f = 3: m_u, m_d, m_s
ightarrow 0 \ N_f = 2^\chi: m_u, m_d
ightarrow 0, m_s \ {
m physical} \end{array}$

 $\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$

- ► Role of sea $s\bar{s}$ -pairs $\leftrightarrow N_f$ -dependence of order parameters \leftrightarrow Zweig rule violation in scalar sector
- Numerical competition between LO and NLO in chiral series
 ⇒ Care required to deal with 3-flavour chiral expansion
- No direct experimental information on size of the effect (yet!)
 Lattice simulations with three dynamical flavours
 e.g., dependence of hadron observables on quark masses

► Two chiral limits $egin{array}{ll} N_f = 3: m_u, m_d, m_s
ightarrow 0 \ N_f = 2^\chi: m_u, m_d
ightarrow 0, m_s \ {
m physical} \end{array}$

 $\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$

- ► Role of sea $s\bar{s}$ -pairs $\leftrightarrow N_f$ -dependence of order parameters \leftrightarrow Zweig rule violation in scalar sector
- Numerical competition between LO and NLO in chiral series
 ⇒ Care required to deal with 3-flavour chiral expansion
- No direct experimental information on size of the effect (yet!)
 Lattice simulations with three dynamical flavours
 e.g., dependence of hadron observables on quark masses
- Finite-volume effects controlled for sufficiently large volumes

► Two chiral limits $egin{array}{ll} N_f=3:m_u,m_d,m_s
ightarrow 0\ N_f=2^\chi:m_u,m_d
ightarrow 0,m_s \ {
m physical} \end{array}$

 $\Sigma(2^{\chi}) = \Sigma(3) + m_s \langle (\bar{u}u)(\bar{s}s) \rangle + O(m_s^2)$

- ► Role of sea $s\bar{s}$ -pairs $\leftrightarrow N_f$ -dependence of order parameters \leftrightarrow Zweig rule violation in scalar sector
- Numerical competition between LO and NLO in chiral series
 ⇒ Care required to deal with 3-flavour chiral expansion
- No direct experimental information on size of the effect (yet!)
 Lattice simulations with three dynamical flavours
 e.g., dependence of hadron observables on quark masses
- Finite-volume effects controlled for sufficiently large volumes

Be careful with lattice extrapolations to light masses

FILITHANS 2005

EdA Physique subatomique a calculs sur réseau

6 et 7 juin 2005 Vercors

Structure des baryons Collisions d'ions lourds Physique nucléaire

carbonel@lpsc.in2p3.fr lellouch@cpt.univ-mrs.fr msoyeur@cea.fr http://gdr-lqcd.in2p3.fr Evec le soutien de CNRS-SPM, IN2P3, CEA

More soon on your screens !

FILITHANS 2005

EdA Physique subatomique a calculs sur réseau

6 et 7 juin 2005 Vercors

More soon on your screens !

Autrans 2006?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectroscopie Structure des baryons Collisions d'ions lourds

Physique nucléaire

carbonel@lpsc.in2p3.fr lellouch@cpt.univ-mrs.fr Madeleine Soyeur msoyeur@cea.fr http://gdr-lqcd.in2p3.fr Rvec le soutien de

CNRS-SPM, IN2P3, CEA