Physique du Plasma de Quarks et de Gluons : Situation Théorique

François Gelis

CEA / DSM / SPhT

Déconfinement

- Rapide augmentation de la pression :
 - pour $T \sim 270 \text{ MeV}$, s'il y a uniquement des gluons
 - pour $T \sim 150-170$ MeV, selon le nombre de quarks légers

CED

Diagramme de phases de QCD

Diagramme de phases de QCD

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Formalisme Euclidien

Moyenne d'opérateurs sur l'ensemble canonique :

Transition de déconfinement

QCD à T finie

Formalisme Euclidien

• Convergence ?

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

$$\left. \mathcal{O} \right\rangle_{_{T}} = rac{\mathrm{tr}\left(e^{-H/T} \mathcal{O}
ight)}{\mathrm{tr}\left(e^{-H/T}
ight)}$$

Principe du calcul : $e^{-H/T} = e^{iH(i/T)}$ $e^{-H/T}$ est un opérateur d'évolution pour un temps imaginaire

Kubo-Martin-Schwinger : les corrélateurs à T finie sont (anti)périodiques dans le temps, avec une période i/T

- Formalisme "à temps imaginaire" :
 - $t \rightarrow i \tau$ (euclidien)
 - KMS \triangleright temps compact \triangleright énergies discrètes ($\Omega_n = 2\pi nT$)
 - très facile à mettre en oeuvre pour calculer des quantités thermodynamiques > calculs sur réseau
 - prolongement analytique nécessaire pour des quantités Minkowskiennes (exemple: fonctions spectrales)

Convergence ?

QCD à T finie • Formalisme Euclidien • Convergence ? Théories effectives Plasma fortement couplé Signatures du QGP

Transition de déconfinement

œ

Color Glass Condensate

- Ne converge pas du tout...
- L'expansion en termes de quantités nues est trop éloignée de la réalité de la physique du QGP

Échelles de distance

Échelles de distance

- 1/T: longueur d'onde des particules du plasma
- 1/gT : distance typique pour les phénomènes collectifs
 - Masse thermique des quasi-particules
 - Phénomènes d'écrantage
 - Amortissement des ondes
- $1/g^2T$: distance entre deux diffusions à petit angle
 - Transport de couleur
 - Émission de photons
- $1/g^4T$: distance entre deux diffusions à grand angle
 - Transport d'impulsion, de charge électrique
- Dans la limite de couplage faible ($g \ll 1$), il y a une hiérarchie nette entre toutes ces échelles
- Théories effectives différentes suivant l'échelle caractéristique du problème physique étudié

Transition de déconfinement

QCD à T finie

- Théories effectives
- Échelles de distance
- Echelle gT
- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Quasi-particules

Relations de dispersion des particules dans le plasma :

Transition de déconfinement

QCD à T finie

Théories effectives

Échelles de distance

● Echelle gT

Echelle g2T log(1/g)

Théorie cinétique

• Régime hydrodynamique

Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

Masses thermiques dues aux interactions avec les autres particules du plasma :

$$m_{
m q} \sim m_{
m g} \sim gT$$

Ecrantage de Debye

Transition de déconfinement

QCD à T finie

Théories effectives

Échelles de distance

Echelle gT

- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle

```
Plasma fortement couplé
```

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

Une charge test polarise les particules du plasma qui l'entourent, de façon à écranter sa charge :

Le potentiel créé à grande distance par la charge test décroît exponentiellement. La portée effective de l'interaction est :

 $\ell \sim 1/m_{\rm debye} \sim 1/gT$

Note : les champs magnétiques statiques ne sont pas écrantés par ce mécanisme (ils sont écrantés sur des échelles de distance $\ell_{mag} \sim 1/g^2 T$)

Transition de déconfinement

QCD à T finie

Théories effectives

Échelles de distance

Echelle gT

- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

Théorie effective à l'échelle gT

Obtenue à partir du développement perturbatif nu par resommation des boucles thermiques dures (HTL) :

$$\Delta \mathcal{L}_{HTL}(\text{gluons}) = \frac{m_{\text{g}}^2}{2} F_{\mu\alpha} \int \frac{d\Omega_{\hat{\boldsymbol{v}}}}{4\pi} \frac{\boldsymbol{v}^{\alpha} \boldsymbol{v}^{\beta}}{(\boldsymbol{v} \cdot D)^2} F_{\beta}{}^{\mu} , \quad \boldsymbol{v}^{\mu} = (1, \hat{\boldsymbol{v}})$$

Peut se formuler comme une théorie (locale) de transport sans collisions pour des particules classiques :

(1)
$$[D_{\mu}, F^{\mu\nu}] = m_{g}^{2} \int \frac{d\Omega_{\hat{\boldsymbol{v}}}}{4\pi} v^{\nu} W(\boldsymbol{x}, \hat{\boldsymbol{v}})$$

(2)
$$[\boldsymbol{v} \cdot D, W(\boldsymbol{x}, \hat{\boldsymbol{v}})] = \hat{\boldsymbol{v}} \cdot \boldsymbol{E}(\boldsymbol{x})$$

- $W(x, \hat{v})$ est la densité de particules dures ($\omega \sim T$) au point x, ayant une vitesse dans la direction \hat{v}
- (2) : équation de Vlasov pour les particules dures
- (1) : équation de Yang-Mills qui donne le champ classique associé aux particules molles ($\omega \sim gT$)

Largeur collisionnelle

Transition de déconfinement

QCD à T finie

Théories effectives

Échelles de distance

- Echelle gT
- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

Largeur collisionnelle :

$$\sim \quad g^4 T^3 \int \frac{d^2 \vec{p}_{\perp}}{p_{\perp}^4} \sim g^2 T \ln\left(\frac{1}{g}\right)$$

$$\stackrel{}{\underset{m_{\text{debye}}}{\longrightarrow}}$$

■ $\lambda \equiv 1/\Gamma_{coll}$ est le libre parcours moyen entre deux diffusions à petit angle ($\theta \sim g$)

Note : le libre parcours moyen entre deux diffusions à grand angle ($heta \sim 1$) est $\sim 1/g^4T$

Théorie effective à l'échelle g2T log(1/g)

Transition de déconfinement

QCD à T finie

Théories effectives

- Échelles de distance
- Echelle gT
- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

En intégrant les modes de longueur d'onde $\sim gT$, on obtient une équation de Boltzmann-Langevin pour les variations de grande longueur d'onde de la densité $W(x, \hat{v})$:

$$egin{aligned} m{v}\cdot D, m{W}(x, \hat{m{v}})] &= \hat{m{v}}\cdot m{E}(x) + \xi(x, \hat{m{v}}) \ &+ g^2 NT \ln\left(rac{gT}{\Lambda}
ight) \int rac{d\Omega_{\hat{m{v}}'}}{4\pi} I(\hat{m{v}}, \hat{m{v}}') W(x, \hat{m{v}}') \end{aligned}$$

• $\xi(x, \hat{v})$ est un bruit gaussien, de corrélation :

$$\langle \xi(x_1, \hat{\boldsymbol{v}}_1), \xi(x_2, \hat{\boldsymbol{v}}_2) \rangle = -2 \frac{g^2 N T^2}{m_g^2} \ln\left(\frac{gT}{\Lambda}\right) I(\hat{\boldsymbol{v}}_1, \hat{\boldsymbol{v}}_2) \delta(x_1 - x_2)$$

• $I(\hat{\boldsymbol{v}}, \hat{\boldsymbol{v}}')$ est un terme de collision dû aux interactions avec les champs de longueur d'onde $\sim gT$ (collisions à petit angle)

Théorie cinétique

Pour calculer des quantités comme la viscosité, ou la conductivité électrique, seules les diffusions qui changent fortement l'impulsion sont importantes. On peut utiliser une équation de Boltzmann :

$$(\partial_t + \vec{v} \cdot \vec{\nabla}_{\vec{x}}) f(x, \vec{p}) = -C[f]$$

- $f(x, \vec{p})$ est une distribution de particules (quarks ou gluons) moyennée sur le spin et la couleur
- cette équation n'a de sens que pour des distances grandes devant la distance entre deux collisions à petit angle
- le terme de collision C[f] doit incorporer tous les processus qui changent significativement les impulsions (cela inclut des processus colinéaires $1 \rightarrow 2$ ou $2 \rightarrow 1$)
- les masses thermiques sont peu importantes à l'ordre dominant pour les diffusions dures (mais doivent être inclues dans les processus colinéaires)

Transition de déconfinement

- Échelles de distance
- Echelle gT

QCD à T finie

- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle
- Plasma fortement couplé
- Signatures du QGP
- Color Glass Condensate
- Besoins en calculs intensifs

Régime hydrodynamique

Transition de déconfinement

(A)

QCD à T finie

Théories effectives

- Échelles de distance
- Echelle gT
- Echelle g2T log(1/g)
- Théorie cinétique
- Régime hydrodynamique
- Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

- Le régime hydrodynamique est atteint lorsqu'on s'intéresse à des échelles de distance beaucoup plus grandes que le libre parcours moyen des constituants du plasma : $\lambda \ll R$
- Pour décrire le système à ces échelles, on a besoin de :
 - Équations de l'hydrodynamique (Euler, Navier-Stokes)
 - Équations de conservation des divers courants
 - Équation d'état du plasma, viscosité

Réduction dimensionnelle

■ En sommant les modes dont la fréquence de Matsubara est non nulle (fermions, et bosons pour n ≠ 0), on obtient une théorie de Yang-Mills à 3 dimensions + un Higgs adjoint :

$$\mathcal{L}_{E} = \frac{1}{4} F_{ij}^{2} + \text{tr}[D_{i}, A_{0}]^{2} + m_{E}^{2} \text{tr}A_{0}^{2} + \frac{\lambda_{E}}{2} (\text{tr}A_{0}^{2})^{2} + \cdots$$

• A_0 est le mode n = 0 des gluons

 $\blacklozenge\ m_{_{E}}$, $\lambda_{_{E}}$ sont déterminés à partir de la théorie sous-jascente

Par intégration du A₀ (massif), on obtient une théorie de Yang-Mills à trois dimensions :

$$\mathcal{L}_M = \frac{1}{4}F_{ij}^2 + \cdots$$

son couplage g_M est déterminé ordre par ordre à partir de L_E
 cette théorie de Yang-Mills est non-perturbative, et doit être simulée sur réseau (beaucoup plus facile que les simulations de 4d-QCD cependant...)

Transition de déconfinement

QCD à T finie

Théories effectives

- Échelles de distance
- Echelle gT
- Echelle g2T log(1/g)

Théorie cinétique

Régime hydrodynamique

Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Réduction dimensionnelle

Calcul de la pression à 4 boucles :

Transition de déconfinement

QCD à T finie

Théories effectives

- Échelles de distance
- Echelle gT
- Echelle g2T log(1/g)
- Théorie cinétique

• Régime hydrodynamique

Réduction dimensionnelle

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Plasma fortement couplé

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs

■ Dans le monde réel, $\alpha_s \sim 0.2$ –0.3 (i.e. $g \sim 2$). Pas de hiérarchie claire entre les différentes échelles de distance...

Correspondance AdS/CFT

Conjecture de Maldacena :

Le régime de couplage fort d'une théorie de Yang-Mills super-symétrique (très compliqué...) est équivalent au régime de couplage faible d'une théorie de super-gravité (calculable)

• Viscosité d'un plasma dans la théorie de YM super-symétrique :

 $\frac{\eta}{s} = \frac{1}{4\pi}$

• Principal problème : QCD super-symétrique \neq QCD...

QCD sur réseau :

calculs très difficiles pour les coefficients de transport (prolongement analytique, MEM, ...)

Accroissement de l'étrangeté

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

- Accroissement de l'étrangeté
- Suppression du J/Psi
- Photons thermiques
- Suppression des jets

Color Glass Condensate

Besoins en calculs intensifs

Dans un nucléon, la distribution des quarks étranges est plus petite que celle des quarks u, d (valence) par un facteur de l'ordre de \alpha_s \sim 0.2-0.3

Dans les collisions *pp*, moins de particules étranges sont produites que de particules non-étranges

Dans le QGP, l'énergie moyenne des quarks u, d et des gluons est de l'ordre de la température
 ▷ si T est assez grande (par rapport à la masse du quark s), alors les réactions uu → ss, dd → ss, gg → ss ne sont pas inhibées par le seuil cinématique dû à la masse du s

- Dans ces conditions, la population de quarks étranges va devenir identique à celle des quarks légers
 la proportion de hadrons étranges va être plus grande que dans les collisions proton-proton
- L'interprétation des données basée sur des modèles statistiques marche également pour les particules étranges

Suppression du J/Psi

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Accroissement de l'étrangeté

Suppression du J/Psi

Photons thermiques

Suppression des jets

Color Glass Condensate

- L'écrantage de Debye empêche la paire QQ de former un état lié Matsui, Satz (1986)
 - chaque quark lourd s'apparie avec un quark léger pour former un méson D
- Observable potentielle : $[J/\psi] / [Charme ouvert]$ \triangleright complication : il y a aussi une suppression dans les collisions proton-noyau, due aux collisions multiples

... ou bien accroissement?

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

- Signatures du QGP
- Accroissement de l'étrangeté
- Suppression du J/Psi
- Photons thermiques
- Suppression des jets

Color Glass Condensate

- Si beaucoup de paires $Q\overline{Q}$ sont produites par collision AA, un Q peut se combiner avec un \overline{Q} d'une autre paire
- Évite la conclusion du scénario de Matsui et Satz, à condition que la distance moyenne entre quarks lourds soit plus petite que la longueur d'écrantage de Debye
- Peut conduire à un accroissement du J/ψ
- Ce scénario dépend crucialement de la distribution initiale des quarks c Gossiaux, Guilho, Aichelin (2004)

Photons thermiques

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP • Accroissement de l'étrangeté • Suppression du J/Psi • Photons thermiques

Suppression des jets

Color Glass Condensate

- Photons produits par le QGP :
 - Très sensible à la température : $dN_{\gamma}/dtd^{3}\vec{x} \sim T^{4}$

Photons thermiques

- Photons produits par le QGP :
 - Très sensible à la température : $dN_{\gamma}/dtd^{3}\vec{x} \sim T^{4}$
- Mais bruit de fond très important...
 - photons initiaux
 - fragmentation de jets induite par le milieu
 - photons produits par le gaz de hadrons
 - désintégrations de mésons

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP • Accroissement de l'étrangeté • Suppression du J/Psi • Photons thermiques • Suppression des jets

Color Glass Condensate

Suppression des jets

Transition de déconfinement

œ

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP • Accroissement de l'étrangeté • Suppression du J/Psi

Photons thermiquesSuppression des jets

Color Glass Condensate

- Jets produits lors de l'impact initial
 - Pas très intéressants en soi…

Suppression des jets

Transition de déconfinement

(A)

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP • Accroissement de l'étrangeté • Suppression du J/Psi • Photons thermiques

Color Glass Condensate

Suppression des jets

- Jets produits lors de l'impact initial
 - Pas très intéressants en soi…
- Perte d'énergie radiative lors de leur traversée du QGP
 - Sensible à la densité d'énergie du milieu traversé
 - Dépend de la longueur parcourue comme L^2
 - Modification importante des corrélations azimuthales (à RHIC, absorption totale du jet dans la direction opposée)

Où se situe le CGC ?

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

- Saturation
- Degrés de liberté
- Equation d'évolution

Besoins en calculs intensifs

décrit le contenu des nucléons ou des noyaux à petit x

- permet de calculer la production de particules semi-dures
- fournit les conditions initiales pour la suite de l'évolution

Transition de déconfinement

œ

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Saturation

• Degrés de liberté

Equation d'évolution

Besoins en calculs intensifs

▷ à basse énergie, un nucléon contient essentiellement des quarks de valence

Transition de déconfinement

(A)

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Saturation

Degrés de liberté

Equation d'évolution

Besoins en calculs intensifs

lorsque l'énergie augmente, de nouveaux partons sont produits

▷ la probabilité d'émission est $\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(\frac{1}{x})$, où x est la fraction d'impulsion longitudinale du gluon produit ▷ à petit x (i.e. grande énergie), ces corrections doivent être resommées

Transition de déconfinement

(A)

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Saturation

Degrés de liberté

Equation d'évolution

Besoins en calculs intensifs

▷ tant que la densité de partons reste faible, son évolution avec l'énergie est linéaire: le nombre de partons produits à une étape donnée dépend linéairement du nombre de partons à l'étape précédente (BFKL)

Transition de déconfinement

(A)

- QCD à T finie
- Théories effectives

Plasma fortement couplé

Signatures du QGP

- Color Glass Condensate
- Saturation
- Degrés de liberté
- Equation d'évolution

Besoins en calculs intensifs

la densité de partons finit par être assez grande pour qu'ils se superposent

▷ la recombinaison des partons devient favorable

▷ à partir de là, l'évolution est non linéaire:

le nombre de partons produits à une étape donnée dépend non-linéairement du nombre de partons présents à l'étape précédente

Domaine de saturation

Frontière définie par $Q^2 = Q_s^2(x)$

Degrés de liberté

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Saturation

Degrés de liberté

Equation d'évolution

Besoins en calculs intensifs

McLerran, Venugopalan (1994) Iancu, Leonidov, McLerran (2001)

- Les modes à petit x ont un grand nombre d'occupation > ils peuvent être décrits par un champ de couleur classique A^µ
- Les modes à grand x, ralentis par la dilatation des durées, sont décrits comme des sources de couleur statiques ρ
- Le champ classique obéit aux équations de Yang-Mills :

$$D_{\nu}F^{\nu\mu} = J^{\mu} = \delta^{\mu+}\delta(x^{-})\rho(\vec{x}_{\perp})$$

Les sources de couleur ρ sont aléatoires, et décrites par une distribution statistique W_{x0}[ρ], où x0 est la séparation entre "petit x" et "grand x"

Equation d'évolution

Une équation d'évolution (JIMWLK) contrôle le changement de $W_{x_0}[\rho]$ avec x_0 :

$$\frac{\partial W_{x_0}[\rho]}{\partial \ln(1/x_0)} = \frac{1}{2} \int_{\vec{x}_{\perp}, \vec{y}_{\perp}} \frac{\delta}{\delta \rho_a(\vec{x}_{\perp})} \chi_{ab}(\vec{x}_{\perp}, \vec{y}_{\perp}) \frac{\delta}{\delta \rho_b(\vec{y}_{\perp})} W_{x_0}[\rho]$$

- équation de diffusion fonctionnelle
- peut se reformuler comme une marche aléatoire dans un espace de lignes de Wilson (processus de Langevin)
- JIMWLK se réécrit comme une hierarchie infinie d'équations pour des corrélateurs de lignes de Wilson. En tronquant cette hierarchie, on obtient une équation fermée pour une fonction à deux points (Balitsky-Kovchegov) :

$$\frac{\partial \boldsymbol{S}_{2}(\boldsymbol{x}|\boldsymbol{\vec{x}},\boldsymbol{\vec{y}})}{\partial \ln(1/\boldsymbol{x})} = \frac{\alpha_{s}}{2\pi^{2}} \int_{\boldsymbol{\vec{x}}} \frac{(\boldsymbol{\vec{x}}-\boldsymbol{\vec{y}})^{2}}{(\boldsymbol{\vec{x}}-\boldsymbol{\vec{z}})^{2}(\boldsymbol{\vec{y}}-\boldsymbol{\vec{z}})^{2}} \Big[\boldsymbol{S}_{2}(\boldsymbol{x}|\boldsymbol{\vec{x}},\boldsymbol{\vec{z}}) \boldsymbol{S}_{2}(\boldsymbol{x}|\boldsymbol{\vec{z}},\boldsymbol{\vec{y}}) - N_{c} \boldsymbol{S}_{2}(\boldsymbol{x}|\boldsymbol{\vec{x}},\boldsymbol{\vec{y}}) \Big]$$

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Saturation

Degrés de liberté
Equation d'évolution

Physique du QGP

- Quantités physiques accessibles :
 - Grandeurs thermodynamiques Z, P, S, F
 - Susceptibilités
 - Potentiel entre quarks
 - Coefficients de transport
 - Fonctions spectrales
- Problèmes "techniques" pour 4d-QCD :
 - Masses de quarks "réalistes"
 - Fermions dynamiques
 - Potentiel chimique baryonique non nul
 - Inversion de relations de dispersion (MEM,...)
- Simulations de théories effectives :
 - Hydrodynamique
 - Théories cinétiques (Boltzmann)
 - Théorie de Yang-Mills à 3 dimensions
 - Théories des champs classiques

Transition de déconfinement

QCD à T finie

Théories effectives

Plasma fortement couplé

Signatures du QGP

Color Glass Condensate

Besoins en calculs intensifs ● Physique du QGP

Color Glass Condensate

Transition de déconfinement

QCD à T finie

Théories effectives

- Plasma fortement couplé
- Signatures du QGP
- Color Glass Condensate
- Besoins en calculs intensifs
 Physique du QGP
 Color Glass Condensate

- Situation plus embryonnaire que pour le QGP...
- Résolution des équations d'évolution :
 - Balitsky-Kovchegov pour un noyau "infini" (facile)
 - Balitsky-Kovchegov avec paramètre d'impact
 - JIMWLK
- Calculs d'observables pour les collisions noyau-noyau :
 - Production de gluons : équations de Yang-Mills (temps + deux dimensions si on suppose l'invariance sous les boosts longitudinaux)
 - Production de quarks : équation de Dirac dans le champ de couleur obtenu précédemment (la rapidité ne peut pas être éliminée car il y a une corrélation en rapidité entre le quark et l'antiquark)