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QCD: theory of the strong interaction?

QCD well tested at high energies, where it is
asymptotically free (PDG ’06)
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Good evidence that QCD describes
the strong interaction in the
non-perturbative domain (e.g.
CP-PACS ’02 w/ Nf =2,
Mπ >∼ 500 MeV, a >∼ 0.11 fm,
L <∼ 2.6 fm)

However, systematic errors not under
control

Have yet to show agreement (e.g. of hadron masses and widths) in the physical limit
of QCD: Nf = 2 + 1, Mπ = 135 MeV, a → 0, L → ∞
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QCD in EW processes

At the quark level

∼ Vub −→

As seen in experiment

∼ Vub 〈π−|ūγµb|B̄0〉

|Vub| from experiment ⇒ must evaluate non-perturbative strong interaction corrections

Must be done in QCD to test
quark-flavor mixing and CP violation
and possibly reveal new physics

Must match accuracy of BaBar, BELLE,

CDF, D0, ALEPH, DELPHI, KLOE, NA48, KTEV, LHC-b,

etc.

⇒ High-precision Lattice QCD
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What is Lattice QCD (LQCD)?

Lattice gauge theory −→ mathematically sound definition of NP QCD:

UV (and IR) cutoffs and a well defined path
integral in Euclidean spacetime:

〈O〉 =

Z

DUDψ̄Dψ e−SG−
R

ψ̄D[M]ψ O[U, ψ, ψ̄]

=

Z

DU e−SG det(D[M]) O[U, ψ, ψ̄]Wick

e−SG det(D[M]) ≥ 0 and finite # of dof’s
→ evaluate numerically using stochastic
methods
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Uµ(x) = eiagAµ(x) ψ(x)

NOT A MODEL: LQCD is QCD when a → 0, V → ∞ and stats → ∞

In practice, limitations . . .
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Limitations: statistical and systematic errors

Limited computer resources → a, L and mq are compromises and statistics finite

Associated errors:

Statistical: 1/
√

Nconf ; eliminate with Nconf → ∞
Discretization: aΛQCD, amq , a|~p|, with a−1 ∼ 2 − 4 GeV

1/mb < a < 1/mc ⇒ b quark cannot be simulated directly
→ rely on effective theories (large mQ expansions of QCD)

Eliminate with continuum extrapolation a → 0: need at least three a’s

Chiral extrapolation: mq → mu, md

Use χPT to give functional form → chiral logs ∼ M2
π ln(M2

π/Λχ)
Requires a number of Mπ <∼ 500 MeV

Finite volume: for simple quantities ∼ e−MπL and MπL >∼ 4 usually safe
Eliminate with L → ∞ (χPT gives functional form)

Renormalization: LQCD gives bare quantities → must renormalize: can be
done in PT, best done non-perturbatively
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Limitations: the Berlin wall ca. 2001

Unquenched calculations very demanding: # of d.o.f. ∼ O(109) and large overhead
for computing det(D[M]) (∼ 109 × 109 matrix) as mq → mu,d
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L = 2.5 fm, T = 8.6 fm, a = 0.09 fm

Physical point Staggered and Wilson with traditional
unquenched algorithms (≤ 2004)

cost ∼ NconfV 5/4m−2.5→3
q a−7

(Gottlieb

’02, Ukawa ’02)

Both formulations have a cost wall

Wall appears for lighter quarks w/
staggered

−→ MILC got a head start w/ staggered fermions: Nf = 2 + 1 simulations with
Mπ >∼ 250 MeV

Impressive effort: many quantities studied

Detailed study of chiral/continuum extrapolation with staggered χPT
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2001 − 2006: staggered dominance and the wall falls

Staggered fermions reign

fπ

fK

3MΞ −MN

2MBs
−MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)

1.110.9

LQCD/Exp’t (nf = 3)

1.110.9

(Davies et al ’04)

Devil’s advocate! → potential problems:

det(D[M])Nf =1≡ det(D[M]stagg)
1/4 to eliminate

spurious “tastes”
⇒ corresponds to non-local theory (Shamir, Bernard,

Golterman, Sharpe, 2004-2008)

⇒ more difficult to argue that a → 0 is QCD

at current a, significant lattice artefacts
⇒ complicated chiral extrapolations w/ SχPT

review of staggered issues in Sharpe ’06

⇒ it is important that approaches on firmer theoretical ground also be used

Wilson fermions strike back:

Schwarz-preconditioned Hybrid Monte Carlo (SAP) (Lüscher ’03-’04)

HMC algorithm with multiple time-scale integration and mass preconditioning
(Sexton et al ’92, Hasenbusch ’01, Urbach et al ’06)
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Nf =2+1 Wilson fermions à la BMW

Dürr et al (BMW Coll.) arXiv:0802.2706

Hasenbusch w/ bells and whistles: RHMC w/ mass preconditioning, multiple
time scales, Omelyan integrator and mixed precision techniques

actions which balance improvements in gauge/fermionic sector and CPU:

tree-level O(a2)-improved gauge action (Lüscher et al ’85)

tree-level O(a)-improved Wilson (Sheikholeslami et al ’85) with 6-level stout
smearing (Morningstar et al ’04)

Non-perturbative improvement coefficient
cSW close to tree-level value thanks to
smearing (Hoffmann et al ’07, quenched study w/ nHYP)

⇒ our fermions should be close to being
non-perturbatively O(a)-improved
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Stability of algorithm
Dürr et al (BMW Coll.) arXiv:0802.2706

Histogram of the inverse iteration number, 1/nCG,
of our linear solver for Nf = 2 + 1, Mπ ∼ 0.21 GeV
and L ∼ 4 fm (lightest pseudofermion)

Good acceptance
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〈P
〉

aMπ

cycle down

cycle up

Metastabilities as observed for low Mπ and coarse a
in Farchioni et al ’05?

Plaquette 〈P〉 cycle in Nf = 2 + 1 simulation w/
Mπ ∈ [0.25, 0.46] GeV, a ∼ 0.124 fm and L ∼ 2 fm:

down from configuration with random links

up from thermalized config. at Mπ ∼ 0.25 GeV

100 + ∼ 300 trajectories

⇒ no metastabilities observed

⇒ can reach Mπ < 200 MeV, L > 4 fm and a < 0.07 fm !
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Does our smearing enhance discretization errors?

Dürr et al (BMW Coll.) arXiv:0802.2706

⇒ scaling study: Nf = 3 w/ action described above, 5 lattice spacings, MπL > 4 fixed
and

Mπ/Mρ =

q

2(Mph
K )2 − (Mph

π )2/Mph
φ ∼ 0.67

i.e. mq ∼ ms
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MN and M∆ are linear in a2 as a2 is
scaled by a factor 8 up to
a ∼ 0.19 fm

⇒ very good scaling
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Calculating the light hadron spectrum

Aim: determine the light hadron spectrum in QCD in a calculation in which all
systematic errors are controlled

⇒ a. inclusion of sea quark effects w/ an exact Nf = 2 + 1 algorithm and w/ an
action whose universality class is known to be QCD

→ see above

⇒ b. complete spectrum for the light mesons and octet and decuplet baryons, 3 of
which are used to fix mud , ms and a

⇒ c. large volumes to guarantee negligible finite-size effects

⇒ d. controlled interpolations to ms (straightforward) and extrapolations to mud

(difficult)

Of course, simulating directly around mud would be better!

⇒ e. controlled extrapolations to the continuum limit: at least 3 a’s in the scaling
regime
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ad b: light hadrons masses and lattice scales

QCD predicts only ratios of dimensionful qties
⇒ overall scale can be fixed w/ one mass at the physical point, which should:

be calculable precisely
have a weak dependence on mud

not decay under the strong interaction

⇒ 2 good candidates:

Ω: largest strange content, but in decuplet
Ξ: in octet, but S=−2

→ 2 separate analyses and compare

(mud , ms) are fixed through: (Mπ/MΩ, MK /MΩ) or (Mπ/MΞ, MK /MΞ)

Determine masses of remaining non-singlet light hadrons:

vector meson octet (ρ, K ∗)
baryon octet (N, Λ, Σ, Ξ)
baryon decuplet (∆, Σ∗

, Ξ∗
, Ω)
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ad b: fits to 2-point functions in different channels
e.g. in pseudoscalar channel, Mπ from correlated fit

CPP(t) ≡ 1
(L/a)3

X

~x

〈[d̄γ5u](x)[ūγ5d ](0)〉 0≪t≪T−→ 〈0|d̄γ5u|π+(~0)〉〈π+(~0)|ūγ5d |0〉
2Mπ

e−Mπ t

Effective masses
aM(t + a/2) = log[C(t)/C(t + a)] for our
simulation at a ≈ 0.082 fm and
Mπ ≈ 0.21 GeV

Gaussian sources and sinks with
r ∼ 0.32 fm
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Resonances are treated as stable particles for now:

all are ground state, except the ρ’s for a ≈ 0.082 fm and Mπ ≈ 0.19, 0.21 GeV

(ρ unstable in L → ∞ for Mπ <∼ 0.44 GeV)

ρ source/sink are ūγid operators which have ∼ 1/(NcL3) suppressed overlap
with scattering ππ states
⇒ only ρ contributes for fitted times

Laurent Lellouch Marseille, June 25, 2008



ad c: infinite-volume limit

For stable particles in large volumes FVE ∼ e−MπL

MπL >∼ 4 expected to give L → ∞ masses within our statistical errors

For a ≈ 0.124 fm and Mπ ≈ 0.39 GeV, found MπL ∼ 8 results compatible w/
MπL ∼ 4 results
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Simulation parameters

β, a [fm] amud Mπ [GeV] ams L3
× T # traj.

3.3 -0.0960 0.66 -0.057 163
× 32 10000

-0.1100 0.52 -0.057 163
× 32 1450

≈ 0.124 -0.1200 0.39 -0.057 163
× 64 4500

-0.1233 0.34 -0.057 243
× 64 600

-0.1265 0.28 -0.057 243
× 64 700

3.57 -0.03175 0.53 0.0 243
× 64 1250

-0.03175 0.52 -0.01 243
× 64 1650

≈ 0.082 -0.03803 0.44 0.0 243
× 64 1300

-0.03803 0.43 -0.01 243
× 64 1300

-0.044 0.32 0.0 323
× 64 1000

-0.044 0.32 -0.07 323
× 64 1000

-0.0483 0.21 0.0 483
× 64 500

-0.0483 0.19 -0.07 483
× 64 1000

3.7 -0.007 0.64 0.0 323
× 96 600

-0.013 0.55 0.0 323
× 96 500

≈ 0.065 -0.02 0.43 0.0 323
× 96 700

-0.022 0.39 0.0 323
× 96 600

-0.025 0.31 0.0 403
× 96 500

# of trajectories given is after thermalization

autocorrelation times less than ≈ 10 trajectories

2 runs with 10000 and 4500 trajectories
−→ no long-range correlations found
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ad d: extrapolation to mud and interpolation to ms

Assume here that scale is set by MΞ; analogous expressions hold when scale is set
by MΩ:

RX ≡ MX /MΞ can be viewed as fns of aMΞ, Rπ and RK

physical QCD point reached for Rπ → Rph
π , RK → Rph

K and aMΞ(Rph
π , Rph

K ) → 0

linear term in R2
K is sufficient for interpolation to ms

curvature in R2
π is visible in extrapolation to mud in some channels

write RX as Taylor expansion in Mπ and MK around physical point:

RX = Rph
X + αX [R2

π − Rph,2
π ] + βx [R

2
K − Rph,2

K ] + hot

→ χPT suggests M3
π NLO behavior (Langacker et al ’74)

→ in Taylor expansion hot ∼ M4
π

⇒ try each or none and use differences as systematic error

Input: RX , Rπ and RK −→ primary output Rph
X
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ad e: including continuum extrapolation

Cutoff effects:
Rph

X → Rph
X [1 + γX a] or Rph

X [1 + γX a2]

⇒ not sensitive to ams or amud
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Systematic errors:

correlator fits: 30 different
combinations of time intervals

mass-dependence fits: purely
quadratic or an additional M3

π (χPT)
or M4

π (Taylor) dependence

continuum extrapolation: a0, a or a2

terms in Rph
X

⇒ 30 × 3 × 3 = 270 different results for
Mph

X

Statistical errors → bootstrap (2000
samples)

For both, take central 68%
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Post-dictions for the light hadron spectrum
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Results in GeV with statistical/systematic
errors

X Mexpt
X MX (Ω set) MX (Ξ set)

ρ 0.775 0.773(27)(28) 0.780(20)(15)
K∗ 0.894 0.909(14)(8) 0.910(9)(5)
N 0.939 0.958(16)(28) 0.963(14)(21)
Λ 1.116 1.112(14)(23) 1.117(10)(13)
Σ 1.191 1.202(17)(12) 1.205(12)(2)
Ξ 1.318 1.318(14)(11) 1.318
∆ 1.232 1.318(57)(80) 1.310(51)(72)
Σ∗ 1.385 1.452(34)(29) 1.444(29)(30)
Ξ∗ 1.533 1.565(25)(10) 1.558(17)(16)
Ω 1.672 1.672 1.669(15)(14)

results from Ξ and Ω sets perfectly consistent

errors smaller in Ξ set

agreement with experiment is excellent
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|Vus| from K → µν̄

Precision tests of SM and constraints on new physics (NP) from

|Vud |2 + |Vus|2 + |Vub|2 = 1 + O
„

M2
W

Λ2
NP

«

Currently

|Vud | = 0.97418(26) [0.03%] from nuclear β decays (Hardy & Towner ’07)

⇒ δ|Vud |2 = 5.2 · 10−4

|Vus| = 0.2246(12) [0.5%] from Kl3 (Flavianet ’07)

⇒ δ|Vus|2 = 2.4 · 10−3

|Vub| = 3.86(9)(47) · 10−3
(CKMfitter ’07)

⇒ |Vub|2 ≃ 10−5

⇒ dominant uncertainty from |Vus|

⇒ ΛNP >∼ 2 TeV
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|Vus| from K → µν̄

Marciano ’04: window of opportunity

Γ(K → µν̄(γ))

Γ(π → µν̄(γ))
−→ |Vus|

|Vud |
FK

Fπ
= 0.2760(6) [0.22%]

Error is smaller than current error on |Vus| from K → πℓν !

Need:

FK /Fπ to 0.5% to match K → πℓν determination (assuming that systematics in
that determination are controlled to that level)

FK /Fπ to 0.22% to match experimental error in K → µν̄(γ)/π → µν̄(γ)

On lattice, get e.g. FK from

CA0P(t) ≡ 1
(L/a)3

X

~x

〈[s̄γ5γ0u](x)[ūγ5s](0)〉 0≪t≪T−→ 〈0|s̄γ5γ0u|K +(~0)〉〈K +(~0)|ūγ5d |0〉
2MK

e−MK t

and
〈0|s̄γ5γ0u|K +(~0)〉 =

√
2MK FK

Laurent Lellouch Marseille, June 25, 2008



FK /Fπ from the lattice: preliminary results
Results for FK /Fπ are corrected for small FV effects using 2-loop χPT (Colangelo et al ’05)

Mass dependence of FK /Fπ studied w/ NLO SU(3) χPT, allowing for O(p4) analytic
terms

FK

Fπ
= 1 +

1
32π2F 2

0



5
4

M2
π log(

M2
π

µ2
) − 1

2
M2

K log(
M2

K

µ2
) − [M2

K − 1
4

M2
π] log(

4M2
K − M2

π

3µ2
)

ff

+
4

F 2
0

[M2
K − M2

π]
n

L5(µ) + Pud M2
π + Ps[M

2
K − M2

π/2]
o

For instance, set scale w/ MΞ, fix F0=Fπ

and include discretization errors through
F0 → F0(1 + αF a2)

Excellent fit w/ CL = 31% and

FK

Fπ
= 1.204(5)(??) [0.4%][??]

and aim to get ?? below 1%.
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FK /Fπ from the lattice: comparison

Ref. Nf action a/fm Lmπ mπ/MeV FK /Fπ L5 · 103

PDG ’06 1.223(15)
Bijnens ’07 O(p4) 1.46
Bijnens ’07 O(p6) 0.97(11)
ETM ’07 2 tmQCD 0.09[fπ] 3.2 >∼ 290 1.227(9)(24)
MILC ’04-’07 2+1 KSAsqTad

MILC
>∼ 0.06[fπ] 4 >∼ 240 1.197(3)(+6

−13) 1.4(2)(+2
−13)

HPQCD-
UKQCD ’07 2+1 KSHISQ

MILC
>∼ 0.09[Υ] 3.8 >∼ 250 1.189(7)

NPLQCD ’06 2+1 KSMILC
/DWF 0.13[r0] 3.7 >∼ 290 1.218(2)(+11

−24)

RBC-
UKQCD ’07-’08 2+1 DWF 0.11[Ω] 4.6 >∼ 330 1.205(18) 0.86(10)

PACS-CS ’07 2+1 NP-SW 0.09[φ] 3 >∼ 210 1.219(26) 1.47(13)
This work 2+1 SW >∼ 0.065[Ξ] > 4 >∼ 190 1.204(5)(??) 1.10(11)(??)
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Conclusion

Lattice QCD simulations have made tremendous progress in the last few years

It is now possible to perform 2 + 1 flavor lattice calculations near the physical
QCD point (Mπ = 135 MeV, a → 0, L → ∞)

The light hadron spectrum, obtained w/ a 2 + 1 flavor calculation in which
extrapolations to the physical point are controlled, is in excellent agreement with
the measured spectrum

A calculation of FK /Fπ in the same approach should allow for a very competitive
determination of |Vus| as well as stringent tests of the SM and constraints on NP

Many more quantities are being computed: quark masses, strange, charm and
bottom weak matrix elements, etc.

The age of precision non-perturbative QCD calculations is finally dawning

Laurent Lellouch Marseille, June 25, 2008


