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Introduction

I Hadron structure functions contain information about the
internal structure of hadrons. For example, The spin-averaged
structure functions F1(x ,Q

2) and F2(x ,Q
2) can tell us overall

densities of quarks and gluons in a hadron.

I Operator product expansion (OPE) can connect moments of
structure functions with hadron matrix elements of local
operators. For example, to leading twist order (twist-2)

2

∫ 1

0
xn−1F1(x ,Q

2) =
∑

f

C
(f )
1,n (µ2/Q2)v

(f )
n (µ),

where the reduced matrix element v
(f )
n is defined by

1

2

∑
s

〈N(~p, s)|O{µ1···µn}
f − traces|N(~p, s)〉

= 2v
(f )
n (pµ1 · · · pµn − traces). (1)

{· · · } means symmetrization on the Lorentz indices.



Introduction

I Here the twist-2 operator

Oµ1···µn

f = (
i

2
)n−1ψ̄f γ

µ1
↔
D

µ2

· · ·
↔
D

µn

ψf ,

↔
D=

←
D −

→
D.

I These hadron matrix elements can be calculated on the
lattice. We need the renormalization constants to match the
bare results to other schemes.

I To calculate the lowest moment (n = 2), a very often used
twist-2 operator is

O44(x) =
1

2
ū(x)[γ4

↔
D4 −

1

3

3∑
k=1

γk

↔
Dk ]u(x),

where Dµ = 1
2(5µ +5∗µ).



Introduction

I To connect quark masses, the chiral condensate, nucleon axial
coupling constant etc. calculated on the lattice to experiment
results or other theory calculations , we need renormalization
constants for quark bilinear operators ψ̄Γψ,
Γ = I , γ5, γµ, γµγ5.

I Lattice perturbation calculations of renormalization constants
do not converge very well and rarely extend beyond the
one-loop level.

I We are using a non-perturbative method, the RI-MOM
scheme. When required, the connection to other schemes, e.g.
MS , can be computed with continuum perturbation theory.



The RI-MOM scheme

I The renormalization condition in the RI-MOM scheme is
[G. Martinelli et al., Nucl. Phys. B 445 (1995) 81]

ZqZO
1

12
Tr[ΛO(p)Λtree

O (p)−1]p2=µ2 = 1,

where Zq is the quark field renormalization constant:

ψR = Z
−1/2
q ψ, ZO is the renormalization constant for the

operator O: OR = ZOO, µ is the renormalization scale.

I ΛO(p) is the amputated forward Green function

ΛO(p) = S−1(p)GO(p)S−1(p),

where S(p) is the quark propagator.

I The calculation has to be done in a fixed gauge, say, Landau
gauge. The method is supposed to work when µ satisfies

ΛQCD � µ� π/a.



The RI-MOM scheme
I The forward Green’s function GO(p) is computed by

GO(p) =
∑
x ,y

e−ip·(x−y)〈ψ(x)O(0)ψ̄(y)〉.

I For quark bilinears ūΓd ,

GΓ(p) =
∑
x ,y

e−ip·(x−y)〈u(x)ū(0)Γd(0)d̄(y)〉

=
1

N

N∑
i=1

Su,i (p|0)Γγ5S
†
d ,i (p|0)γ5, (2)

where N is the total number of gauge configurations and

Su/d ,i (p|0) =
∑
x

e−ip·xSu/d ,i (x , 0).



The RI-MOM scheme

I The quark propagator in momentum space is given by

Su/d(p) =
1

N

N∑
i=1

Su/d ,i (p|0).

I At tree level, Λtree
Γ (p) = I , γ5, γµ, γµγ5 for the quark bilinear

ūΓd .

I The quark field renormalization constant Zq can be obtained
by comparing the quark propagator to the free propagator (RI’
scheme):

ZRI ′
q =

−i

12
Tr [S(p)γµ sin(pµa)]p2=µ2 .

I In the RI scheme, Zq is calculated from

(ZRI
q )−1 =

i

48
Tr

[
γµ
∂S−1(p)

∂pµ

]
p2=µ2

.



I The difference between the two schemes is at the N2LO in the
Landau gauge. [E. Franco and V. Lubicz 1998, K. G.
Chetyrkin and A. Retey 2000]

ZRI ′
q

ZRI
q

= 1−
(

67

6
− 2nf

3

) (αs

4π

)2
−

(
52321

72
− 2236nf

27

+
52n2

f

27
− 607ζ3

4
+ 8ζ3nf

) (αs

4π

)3

+O(α4
s ).

I For twist-2 operators, we are considering

O44(x) =
1

2
ū(x)[γ4

↔
D4 −

1

3

3∑
k=1

γk

↔
Dk ]d(x),

where Dµ = 1
2(5µ +5∗µ).



I Finishing the Wick contractions, we find

〈u(x)O44(0)d̄(y)〉 = −1

4
Su(x , 0)γ5S̃

†
d(y , 0)γ5

−1

4
S̃u(x , 0)γ5S

†
d(y , 0)γ5, (3)

where S̃u(y , 0) is defined by (similarly for S̃d)

S̃u(y , 0) ≡ Su(y , t̂)U
†
t̂
(0)γ4 − Su(y ,−t̂)Ut̂(−t̂)γ4

−1

3

[
Su(y , k̂)U†

k̂
(0)γk − Su(y ,−k̂)Uk̂(−k̂)γk

]
,

and thus can be computed by solving∑
y

Du(z , y)S̃u(y , 0) = δz,t̂U
†
t̂
(0)γ4 − δz,−t̂Ut̂(−t̂)γ4 −

1

3

[
δz,k̂U†

k̂
(0)γk − δz,−k̂Uk̂(−k̂)γk

]
.

Here Du(z , y) is the Dirac operator for the up quark.



I Then the Green function for O44 is

GO44(p) =
∑
x ,y

e−ip·(x−y)〈u(x)O44(0)d̄(y)〉

= −1

4
· 1

N

N∑
i=1

[
Su,i (p|0)γ5S̃

†
d ,i (p|0)γ5

+S̃u,i (p|0)γ5S
†
d ,i (p|0)γ5

]
, (4)

where N is the number of configurations and

S̃†u/d ,i (p|0) =
∑
y

e ip·y S̃†u/d ,i (y , 0).

I At tree level, we have

Λtree
O44

(p) = i

[
γ4p4 −

1

3

3∑
k=1

γkpk

]
.



I To obtain the quark propagators in the Landau gauge, we can
fix the gauge and then invert. For aµq = 0.0064 on the
243 × 48 lattice, one propagator (12 inversions) takes ∼ 26
hours on a Xeon5150 2.66GHz machine.

I Since the point source quark propagators have been calculated
for our baryon spectrum project without gauge fixing, we can
fix the gauge and then convert the propagators. ∼ 45 minutes
for one propagator.

I

U f
µ(x) = G (x)U i

µ(x)G †(x + µ̂), G (x) ∈ SU(3).

Up(x) ≡ Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x),

U f
p (x) = G (x)U i

p(x)G †(x).

I

S f (x , y ;U f ) = G (x)S i (x , y ;U i )G †(y).



Preliminary results

I Use a unit gauge configuration to check the analysis codes.

I Dynamical simulations of Nf = 2 degenerate Wilson twisted
mass quarks. Tree-level Symanzik improved gauge action.

I β = 3.9, aµq = 0.0064, 0.0085, 243 × 48, 30 configs per mass.

I The momenta take the values

apµ =

(
π

T
(2kt + 1),

2π

L
kx ,

2π

L
ky ,

2π

L
kz

)
, (5)

where (kt , kx , ky , kz)=(0,0,0,0),...,(3,4,4,4). [ap < π/2]

I We are using the hypercubic improved method described in
[F. de Soto and C. Roiesnel, JHEP 0709 (2007) 007] to
average (kt , kx , ky , kz)’s corresponding to a same p2 to reduce
hypercubic lattice artifacts.

I We also use the “democratic” method (average data points
close to the diagonal line) to compare. The errors are from
Jackknife.



quark propagators, ZRI ′
q

I The inverse of the full quark propagator in the twisted basis
takes the form

S−1
tw (p) = −iγµ sin(pµa)Σ1(p

2)− Σ3(p
2)± iγ5Σ2(p

2).

±: up and down. At tree-level, Σ1(p
2) = 1, Σ2(p

2) = aµq

and Σ3(p
2) = 2

∑4
µ=1 sin2(

pµa
2 ).

I

Σ1(p
2) =

i

12a2p2
Tr[γµ sin(pµa)S−1

tw (p)]

I

Σ2(p
2) = ∓ i

12
Tr[γ5S

−1
tw (p)]

I

Σ3(p
2) =

−1

12
Tr[S−1

tw (p)]

I

ZRI ′
q (µ2) = (Σ1(µ

2))−1



Σ2



Σ2, averaging (kt , kx , ky , kz)’s close to the diagonal



Σ1(= 1/ZRI ′
q )



ZS for the scalar density ūd



ZP for the pseudoscalar density ūγ5d

ΓP(p2,m) ≡ 1

12
Tr[ΛPγ5] = c1(p

2,m) + c2(p
2,m)

〈q̄q〉
mp2

+O(
1

p4
),



Z44 for operator O44



Hypercubic improved vs. democratic average: Z44, aµ = 0.0064
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Summary and to do

I We have obtained some preliminary results for Z44, ZS and ZP

using the RI-MOM scheme for two flavor twisted mass
fermion simulations.

I The statistics are low. We are calculating with more
configurations (up to ∼ 300 for each mass), quark masses and
beta values.

I Extrapolate to the chiral limit. Subtract the Goldstone pole
for ZP .

I Conversion to the MS scheme.

I More twist-2 operators, ZV , ZA etc.

Thanks for your attention !


