RI-MOM renormalization of twist-2 and bilinear quark operators with twisted mass fermions

Zhaofeng Liu

LPSC, Grenoble
Marseille, June 27, 2008

Outline

- Introduction
- Why twist-2 and bilinear operators
- RI-MOM renormalization scheme
- preliminary results
- quark propagators and Z_{q}
- Z_{S}, Z_{P}, Z_{44}
- summary and to do

Please see Gregorio Herdoiza's talk for tmQCD and ETMC.

Introduction

- Hadron structure functions contain information about the internal structure of hadrons. For example, The spin-averaged structure functions $F_{1}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)$ can tell us overall densities of quarks and gluons in a hadron.
- Operator product expansion (OPE) can connect moments of structure functions with hadron matrix elements of local operators. For example, to leading twist order (twist-2)

$$
2 \int_{0}^{1} x^{n-1} F_{1}\left(x, Q^{2}\right)=\sum_{f} C_{1, n}^{(f)}\left(\mu^{2} / Q^{2}\right) v_{n}^{(f)}(\mu)
$$

where the reduced matrix element $v_{n}^{(f)}$ is defined by

$$
\begin{array}{r}
\frac{1}{2} \sum_{s}\langle N(\vec{p}, s)| \mathcal{O}_{f}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}-\operatorname{traces}|N(\vec{p}, s)\rangle \\
=2 v_{n}^{(f)}\left(p^{\mu_{1}} \cdots p^{\mu_{n}}-\text { traces }\right) \tag{1}
\end{array}
$$

$\{\cdots\}$ means symmetrization on the Lorentz indices.

Introduction

- Here the twist-2 operator

$$
\mathcal{O}_{f}^{\mu_{1} \cdots \mu_{n}}=\left(\frac{i}{2}\right)^{n-1} \bar{\psi}_{f} \gamma^{\mu_{1}} \stackrel{\leftrightarrow}{D}^{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}^{\mu_{n}} \psi_{f}
$$

$\overleftrightarrow{D}=\overleftarrow{D}-\vec{D}$

- These hadron matrix elements can be calculated on the lattice. We need the renormalization constants to match the bare results to other schemes.
- To calculate the lowest moment $(n=2)$, a very often used twist-2 operator is

$$
\mathcal{O}_{44}(x)=\frac{1}{2} \bar{u}(x)\left[\gamma_{4} \overleftrightarrow{D}_{4}-\frac{1}{3} \sum_{k=1}^{3} \gamma_{k} \overleftrightarrow{D}_{k}\right] u(x)
$$

where $D_{\mu}=\frac{1}{2}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)$.

Introduction

- To connect quark masses, the chiral condensate, nucleon axial coupling constant etc. calculated on the lattice to experiment results or other theory calculations, we need renormalization constants for quark bilinear operators $\bar{\psi} \Gamma \psi$, $\Gamma=I, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}$.
- Lattice perturbation calculations of renormalization constants do not converge very well and rarely extend beyond the one-loop level.
- We are using a non-perturbative method, the RI-MOM scheme. When required, the connection to other schemes, e.g. $\overline{M S}$, can be computed with continuum perturbation theory.

The RI-MOM scheme

- The renormalization condition in the RI-MOM scheme is [G. Martinelli et al., Nucl. Phys. B 445 (1995) 81]

$$
Z_{q} Z_{\mathcal{O}} \frac{1}{12} \operatorname{Tr}\left[\Lambda_{\mathcal{O}}(p) \Lambda_{\mathcal{O}}^{\text {tree }}(p)^{-1}\right]_{p^{2}=\mu^{2}}=1
$$

where Z_{q} is the quark field renormalization constant: $\psi_{R}=Z_{q}^{-1 / 2} \psi, Z_{\mathcal{O}}$ is the renormalization constant for the operator $\mathcal{O}: \mathcal{O}_{R}=Z_{\mathcal{O}} \mathcal{O}, \mu$ is the renormalization scale.

- $\Lambda_{\mathcal{O}}(p)$ is the amputated forward Green function

$$
\Lambda_{\mathcal{O}}(p)=S^{-1}(p) G_{\mathcal{O}}(p) S^{-1}(p)
$$

where $S(p)$ is the quark propagator.

- The calculation has to be done in a fixed gauge, say, Landau gauge. The method is supposed to work when μ satisfies

$$
\Lambda_{Q C D} \ll \mu \ll \pi / a
$$

The RI-MOM scheme

- The forward Green's function $G_{\mathcal{O}}(p)$ is computed by

$$
G_{\mathcal{O}}(p)=\sum_{x, y} e^{-i p \cdot(x-y)}\langle\psi(x) \mathcal{O}(0) \bar{\psi}(y)\rangle .
$$

- For quark bilinears $\bar{u} \Gamma d$,

$$
\begin{align*}
G_{\Gamma}(p) & =\sum_{x, y} e^{-i p \cdot(x-y)}\langle u(x) \bar{u}(0) \Gamma d(0) \bar{d}(y)\rangle \\
& =\frac{1}{N} \sum_{i=1}^{N} S_{u, i}(p \mid 0) \Gamma \gamma_{5} S_{d, i}^{\dagger}(p \mid 0) \gamma_{5} \tag{2}
\end{align*}
$$

where N is the total number of gauge configurations and

$$
S_{u / d, i}(p \mid 0)=\sum_{x} e^{-i p \cdot x} S_{u / d, i}(x, 0) .
$$

The RI-MOM scheme

- The quark propagator in momentum space is given by

$$
S_{u / d}(p)=\frac{1}{N} \sum_{i=1}^{N} S_{u / d, i}(p \mid 0)
$$

- At tree level, $\Lambda_{\Gamma}^{\text {tree }}(p)=I, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}$ for the quark bilinear $\bar{u} \Gamma$.
- The quark field renormalization constant Z_{q} can be obtained by comparing the quark propagator to the free propagator (RI^{\prime} scheme):

$$
Z_{q}^{R I^{\prime}}=\frac{-i}{12} \operatorname{Tr}\left[S(p) \gamma_{\mu} \sin \left(p_{\mu} a\right)\right]_{p^{2}=\mu^{2}}
$$

- In the RI scheme, Z_{q} is calculated from

$$
\left(Z_{q}^{R I}\right)^{-1}=\frac{i}{48} \operatorname{Tr}\left[\gamma_{\mu} \frac{\partial S^{-1}(p)}{\partial p_{\mu}}\right]_{p^{2}=\mu^{2}}
$$

- The difference between the two schemes is at the $\mathrm{N}^{2} \mathrm{LO}$ in the Landau gauge. [E. Franco and V. Lubicz 1998, K. G. Chetyrkin and A. Retey 2000]

$$
\begin{aligned}
\frac{Z_{q}^{R I^{\prime}}}{Z_{q}^{R I}}= & 1-\left(\frac{67}{6}-\frac{2 n_{f}}{3}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}-\left(\frac{52321}{72}-\frac{2236 n_{f}}{27}\right. \\
& \left.+\frac{52 n_{f}^{2}}{27}-\frac{607 \zeta_{3}}{4}+8 \zeta_{3} n_{f}\right)\left(\frac{\alpha_{s}}{4 \pi}\right)^{3} \\
& +O\left(\alpha_{s}^{4}\right) .
\end{aligned}
$$

- For twist-2 operators, we are considering

$$
\mathcal{O}_{44}(x)=\frac{1}{2} \bar{u}(x)\left[\gamma_{4} \stackrel{\leftrightarrow}{D}_{4}-\frac{1}{3} \sum_{k=1}^{3} \gamma_{k} \stackrel{\leftrightarrow}{D}_{k}\right] d(x)
$$

where $D_{\mu}=\frac{1}{2}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)$.

- Finishing the Wick contractions, we find

$$
\begin{align*}
\left\langle u(x) \mathcal{O}_{44}(0) \bar{d}(y)\right\rangle= & -\frac{1}{4} S_{u}(x, 0) \gamma_{5} \tilde{S}_{d}^{\dagger}(y, 0) \gamma_{5} \\
& -\frac{1}{4} \tilde{S}_{u}(x, 0) \gamma_{5} S_{d}^{\dagger}(y, 0) \gamma_{5} \tag{3}
\end{align*}
$$

where $\tilde{S}_{u}(y, 0)$ is defined by (similarly for \tilde{S}_{d})

$$
\begin{aligned}
\tilde{S}_{u}(y, 0) \equiv & S_{u}(y, \hat{t}) U_{\hat{t}}^{\dagger}(0) \gamma_{4}-S_{u}(y,-\hat{t}) U_{\hat{t}}(-\hat{t}) \gamma_{4} \\
& -\frac{1}{3}\left[S_{u}(y, \hat{k}) U_{\hat{k}}^{\dagger}(0) \gamma_{k}-S_{u}(y,-\hat{k}) U_{\hat{k}}(-\hat{k}) \gamma_{k}\right],
\end{aligned}
$$

and thus can be computed by solving

$$
\begin{aligned}
\sum_{y} D_{u}(z, y) \tilde{S}_{u}(y, 0)= & \delta_{z, \hat{t}} U_{\hat{t}}^{\dagger}(0) \gamma_{4}-\delta_{z,-\hat{t}} U_{\hat{t}}(-\hat{t}) \gamma_{4}- \\
& \frac{1}{3}\left[\delta_{z, \hat{k}} U_{\hat{k}}^{\dagger}(0) \gamma_{k}-\delta_{z,-\hat{k}} U_{\hat{k}}(-\hat{k}) \gamma_{k}\right] .
\end{aligned}
$$

Here $D_{u}(z, y)$ is the Dirac operator for the up quark.

- Then the Green function for \mathcal{O}_{44} is

$$
\begin{align*}
G_{\mathcal{O}_{44}}(p)= & \sum_{x, y} e^{-i p \cdot(x-y)}\left\langle u(x) \mathcal{O}_{44}(0) \bar{d}(y)\right\rangle \\
= & -\frac{1}{4} \cdot \frac{1}{N} \sum_{i=1}^{N}\left[S_{u, i}(p \mid 0) \gamma_{5} \tilde{S}_{d, i}^{\dagger}(p \mid 0) \gamma_{5}\right. \\
& \left.+\tilde{S}_{u, i}(p \mid 0) \gamma_{5} S_{d, i}^{\dagger}(p \mid 0) \gamma_{5}\right] \tag{4}
\end{align*}
$$

where N is the number of configurations and

$$
\tilde{S}_{u / d, i}^{\dagger}(p \mid 0)=\sum_{y} e^{i p \cdot y} \tilde{S}_{u / d, i}^{\dagger}(y, 0) .
$$

- At tree level, we have

$$
\Lambda_{\mathcal{O}_{44}}^{\text {tree }}(p)=i\left[\gamma_{4} p_{4}-\frac{1}{3} \sum_{k=1}^{3} \gamma_{k} p_{k}\right] .
$$

- To obtain the quark propagators in the Landau gauge, we can fix the gauge and then invert. For $a \mu_{q}=0.0064$ on the $24^{3} \times 48$ lattice, one propagator (12 inversions) takes ~ 26 hours on a Xeon5150 2.66 GHz machine.
- Since the point source quark propagators have been calculated for our baryon spectrum project without gauge fixing, we can fix the gauge and then convert the propagators. ~ 45 minutes for one propagator.

$$
\begin{gathered}
U_{\mu}^{f}(x)=G(x) U_{\mu}^{i}(x) G^{\dagger}(x+\hat{\mu}), \quad G(x) \in S U(3) \\
U_{p}(x) \equiv U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x) \\
U_{p}^{f}(x)=G(x) U_{p}^{i}(x) G^{\dagger}(x) \\
S^{f}\left(x, y ; U^{f}\right)=G(x) S^{i}\left(x, y ; U^{i}\right) G^{\dagger}(y)
\end{gathered}
$$

Preliminary results

- Use a unit gauge configuration to check the analysis codes.
- Dynamical simulations of $N_{f}=2$ degenerate Wilson twisted mass quarks. Tree-level Symanzik improved gauge action.
- $\beta=3.9, a \mu_{q}=0.0064,0.0085,24^{3} \times 48,30$ configs per mass.
- The momenta take the values

$$
\begin{equation*}
a p_{\mu}=\left(\frac{\pi}{T}\left(2 k_{t}+1\right), \frac{2 \pi}{L} k_{x}, \frac{2 \pi}{L} k_{y}, \frac{2 \pi}{L} k_{z}\right), \tag{5}
\end{equation*}
$$

where $\left(k_{t}, k_{x}, k_{y}, k_{z}\right)=(0,0,0,0), \ldots,(3,4,4,4) .[a p<\pi / 2]$

- We are using the hypercubic improved method described in [F. de Soto and C. Roiesnel, JHEP 0709 (2007) 007] to average ($k_{t}, k_{x}, k_{y}, k_{z}$)'s corresponding to a same p^{2} to reduce hypercubic lattice artifacts.
- We also use the "democratic" method (average data points close to the diagonal line) to compare. The errors are from Jackknife.
quark propagators, $Z_{q}^{R I^{\prime}}$
- The inverse of the full quark propagator in the twisted basis takes the form

$$
S_{t w}^{-1}(p)=-i \gamma_{\mu} \sin \left(p_{\mu} a\right) \Sigma_{1}\left(p^{2}\right)-\Sigma_{3}\left(p^{2}\right) \pm i \gamma_{5} \Sigma_{2}\left(p^{2}\right)
$$

\pm : up and down. At tree-level, $\Sigma_{1}\left(p^{2}\right)=1, \Sigma_{2}\left(p^{2}\right)=a \mu_{q}$ and $\Sigma_{3}\left(p^{2}\right)=2 \sum_{\mu=1}^{4} \sin ^{2}\left(\frac{p_{\mu} a}{2}\right)$.

$$
\begin{gathered}
\Sigma_{1}\left(p^{2}\right)=\frac{i}{12 a^{2} p^{2}} \operatorname{Tr}\left[\gamma_{\mu} \sin \left(p_{\mu} a\right) S_{t w}^{-1}(p)\right] \\
\Sigma_{2}\left(p^{2}\right)=\mp \frac{i}{12} \operatorname{Tr}\left[\gamma_{5} S_{t w}^{-1}(p)\right] \\
\Sigma_{3}\left(p^{2}\right)=\frac{-1}{12} \operatorname{Tr}\left[S_{t w}^{-1}(p)\right] \\
Z_{q}^{R I^{\prime}}\left(\mu^{2}\right)=\left(\Sigma_{1}\left(\mu^{2}\right)\right)^{-1}
\end{gathered}
$$

Σ_{2}

Σ_{2}, averaging $\left(k_{t}, k_{x}, k_{y}, k_{z}\right)$'s close to the diagonal

$\Sigma_{1}\left(=1 / Z_{q}^{R I^{\prime}}\right)$

Z_{S} for the scalar density $\bar{u} d$

Z_{P} for the pseudoscalar density $\bar{u} \gamma_{5} d$

$\Gamma_{P}\left(p^{2}, m\right) \equiv \frac{1}{12} \operatorname{Tr}\left[\Lambda_{P} \gamma_{5}\right]=c_{1}\left(p^{2}, m\right)+c_{2}\left(p^{2}, m\right) \frac{\langle\bar{q} q\rangle}{m p^{2}}+\mathcal{O}\left(\frac{1}{p^{4}}\right)$,

Z_{44} for operator \mathcal{O}_{44}

Hypercubic improved vs. democratic average: $Z_{44}, a \mu=0.0064$

Summary and to do

- We have obtained some preliminary results for Z_{44}, Z_{S} and Z_{P} using the RI-MOM scheme for two flavor twisted mass fermion simulations.
- The statistics are low. We are calculating with more configurations (up to ~ 300 for each mass), quark masses and beta values.
- Extrapolate to the chiral limit. Subtract the Goldstone pole for Z_{P}.
- Conversion to the $\overline{M S}$ scheme.
- More twist-2 operators, Z_{V}, Z_{A} etc.

Thanks for your attention!

