Nucleon axial coupling constant with Nf = 2 twisted mass fermions and other 3-point functions

Rémi Baron CEA/DSM/IRFU/SPhN

27 June 2008

3-point functions

Outline

Short reminder about 2-point functions

3-point functions

Propagator

• Key element obtained after wick contraction

$$S^{ab}_{lphaeta}(x,0) \;\;=\;\; \langle u^a_lpha(x)ar{u}^b_eta(0)
angle = rac{1}{Z}\int Dar{\psi}D\psi D\phi\; u(x)ar{u}(0)e^{-S[ar{\psi},\psi,\phi]}$$

• It obeys for a local source to

$$D[U]^{ca}_{\gamma lpha}(z,x) S^{ab}_{lpha eta}(x,0) = \delta^{cb} \delta_{\gamma eta} \delta(z,0)$$

- The source is fixed !
- Smearing

Contractions

Interpolating field for nucleon

$$J_{\alpha}(\boldsymbol{x}) = \epsilon^{abc} u_{\alpha}^{a}(\vec{x},t) \left[u^{b}(\vec{x},t)^{T_{D}} C \gamma_{5} d^{c}(\vec{x},t) \right]$$

• Extract number from behaviour of correlator at large time

$$\mathcal{C}_{\gamma
ho}(t) = \sum_{ec{x}} e^{iec{
ho}\cdotec{x}} ig\langle 0|J_\gamma(t,ec{x}) ar{J}_
ho(0)|0ig
angle \propto e^{-\mathcal{E}(ec{
ho})t}$$

Example

• Take $\vec{p} = 0$ and the correct combination of γ and ρ to get masses

3-point functions

Short reminder about 2-point functions

3-point functions

Why?

- g_A (Reminder : chiral extrapolation for nucleon $m_N = M_0 + c_1 m_{\pi}^2 - \frac{3g_A^2}{32\pi f_{\pi}^2} m_{\pi}^3 + \ldots)$
- Sigma term
- Moments of parton distribution functions (PDF)
- Moments of generalized parton distribution functions (GPDs)
- Form factors

Large experimental programs to study GPDs : Jlab, DESY(HERMES) and CERN(COMPASS)

How to compute

The matrix element of interest is now

$$egin{array}{rcl} R &=& \displaystyle{\sum_{ec{y},ec{z}} e^{iec{
ho}\cdotec{y}} e^{iec{
ho}\cdotec{z}} \left\langle 0|J_{\gamma}(y)O(z)ar{J}_{
ho}(0)|0
ight
angle} \end{array}$$

 $\propto \langle N(p,s)|O(z)|N(p',s')
angle$ if J is a nucleon interpolating field

• Try to look for a plateau on t_z with $t_y \gg t_z \gg 0$

3-point functions

Quark disconnected diagrams

- Evaluation of disconnected diagram numerically demanding (all to all propagator)
- · Can look at non-singlet (u-d) matrix elements only

Generalized source

$$R = \sum_{ec y,ec z} e^{iec p\cdot ec y} e^{iec p^\prime\cdot ec z} ig\langle 0|J_\gamma(y)O(z)ar J_
ho(0)|0ig
angle$$

After wick contractions obtain something like

$$R = B^{\dagger} \gamma_5 \Lambda S_u$$

- There is an unknown piece in *B*, but $B = D^{-1}\Sigma_G$ where Σ_G is a combination of "normal" propagators
- Σ_G is called generalized or sequential source
- New inversions are necessary
- To create Σ_G
 - Fix time of sink (ie *t_y*)
 - Fix momentum at sink but not where the operator is inserted
 - Choose how to project

3-point functions

Contractions

- Red part : generalized propagator
- Blue part : normal propagator

Just need to combine correctly Dirac, color, and space indices.

Renormalization issues

- We will use the RI-MOM scheme to renormalize non-perturbatively the bare quantities obtained (Zhaofeng's talk)
- Ideally (no mixing) multiplicative renormalization using scheme ${\cal S}$ at scale μ

$$\mathcal{O}^{\mathcal{S}}(\mu) = Z^{\mathcal{O}}_{\mathcal{S}}(\mu) \mathcal{O}_{bare}$$

- Some renormalization constants have already been computed by other members of the collaboration (*Z_A*, *Z_V*, ...)
- Perturbative theory can then be used to go to $\overline{\text{MS}}$ scheme

- Gives information about the fraction of spin carried by quarks
- Well known experimentally from neutron beta decay $(g_A \simeq 1.269)$
- Can be extracted with $O(z) = A_{\mu}^{u-d} = \bar{u}\gamma_{\mu}\gamma_5 u \bar{d}\gamma_{\mu}\gamma_5 d$
- We will need to use chiral perturbation theory, to check for finite size effects, for cutoff effects

< X >

- Gives information about the fraction of energy carried by quarks
- Twist-2 operators

$$\mathcal{O}^{\{\mu_1\cdots\mu_n\}} = (\frac{i}{2})^{n-1} G_{ff'} \bar{\psi}_f \gamma^{\{\mu_1} \stackrel{\leftrightarrow}{D}^{\mu_2} \cdots \stackrel{\leftrightarrow}{D}^{\mu_n\}} \psi_{f'} - traces,$$

 $\overrightarrow{D} = \overleftarrow{D} - \overrightarrow{D}, \{\cdots\}$ means symmetrization on the Lorentz indices.

• In our calculation, we use the operator

$$\mathcal{O}_{44}(x) = \frac{1}{2}\overline{u}(x)[\gamma_4 \stackrel{\leftrightarrow}{D}_4 - \frac{1}{3}\sum_{k=1}^3 \gamma_k \stackrel{\leftrightarrow}{D}_k]u(x),$$

where $D_{\mu} = \frac{1}{2}(\nabla_{\mu} + \nabla^*_{\mu}).$

< X >

 Then the bare lowest moment of the quark distribution functions (x) is given by (p = 0)

$$\langle x \rangle = rac{1}{2m_N^2} \langle N, \vec{0} | \mathcal{O}_{44} | N, \vec{0} \rangle = rac{2}{m_N} rac{C_{44}(t)}{C_N(t_y)} \quad (0 \ll t \ll t_y).$$

Here

$$egin{aligned} \mathcal{C}_{44}(t) &= \sum_{ec{y},ec{z}} \langle J(t_y,ec{y}) \mathcal{O}_{44}(t,ec{z}) ar{J}(0,0)
angle, \ \mathcal{C}_{N}(t_y) &= \sum_{ec{y}} \langle J(t_y,ec{y}) ar{J}(0,0)
angle, \end{aligned}$$

and J(x) is the interpolating field for the nucleon.

Plot

• Conserved (or point split) current (10 confs)

Plot

• Very preliminary (10 configurations)

 Close to the value found by italian members of the collaboration

3-point functions

Conclusion

- Wait for more data
- Future work to do
 - Higher moments of GPDs
 - Form factor at low transfer
 - Disconnected diagrams