Nucleon axial coupling constant with $\mathrm{Nf}=2$ twisted mass fermions and other 3-point functions

Rémi Baron
CEA/DSM/IRFU/SPhN

Outline

Short reminder about 2-point functions

3-point functions

Propagator

- Key element obtained after wick contraction

$$
S_{\alpha \beta}^{a b}(x, 0)=\left\langle u_{\alpha}^{a}(x) \bar{u}_{\beta}^{b}(0)\right\rangle=\frac{1}{Z} \int D \bar{\psi} D \psi D \phi u(x) \bar{u}(0) e^{-S[\bar{\psi}, \psi, \phi]}
$$

- It obeys for a local source to

$$
D[U]_{\gamma \alpha}^{c a}(z, x) S_{\alpha \beta}^{a b}(x, 0)=\delta^{c b} \delta_{\gamma \beta} \delta(z, 0)
$$

- The source is fixed!
- Smearing

Contractions

- Interpolating field for nucleon

$$
J_{\alpha}(x)=\epsilon^{a b c} u_{\alpha}^{a}(\vec{x}, t)\left[u^{b}(\vec{x}, t)^{T_{D}} C \gamma_{5} d^{c}(\vec{x}, t)\right]
$$

- Extract number from behaviour of correlator at large time

$$
C_{\gamma \rho}(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\langle 0| J_{\gamma}(t, \vec{x}) \bar{J}_{\rho}(0)|0\rangle \propto e^{-E(\vec{p}) t}
$$

Example

- Take $\vec{p}=0$ and the correct combination of γ and ρ to get masses

Outline

Short reminder about 2-point functions

3-point functions

Why?

- g_{A} (Reminder : chiral extrapolation for nucleon

$$
\left.m_{N}=M_{0}+c_{1} m_{\pi}^{2}-\frac{3 g_{A}^{2}}{32 \pi f_{\pi}^{2}} m_{\pi}^{3}+\ldots\right)
$$

- Sigma term
- Moments of parton distribution functions (PDF)
- Moments of generalized parton distribution functions (GPDs)
- Form factors

Large experimental programs to study GPDs : Jlab, DESY(HERMES) and CERN(COMPASS)

How to compute

The matrix element of interest is now

$$
R=\sum_{\vec{y}, \vec{z}} e^{i \vec{\beta} \cdot \vec{y}} e^{i \overrightarrow{\beta^{\prime}} \cdot \vec{z}}\langle 0| J_{\gamma}(y) O(z) \bar{J}_{\rho}(0)|0\rangle
$$

$\propto\langle N(p, s)| O(z)\left|N\left(p^{\prime}, s^{\prime}\right)\right\rangle$ if J is a nucleon interpolating field

- Try to look for a plateau on t_{z} with $t_{y} \gg t_{z} \gg 0$

Quark disconnected diagrams

- Evaluation of disconnected diagram numerically demanding (all to all propagator)
- Can look at non-singlet (u-d) matrix elements only

Generalized source

$$
R=\sum_{\overrightarrow{\vec{y}}, \vec{z}} e^{i \overrightarrow{\bar{p}} \cdot \vec{y}} e^{i \vec{p} \cdot \vec{z}}\langle 0| J_{\gamma}(y) O(z) \bar{J}_{\rho}(0)|0\rangle
$$

- After wick contractions obtain something like

$$
R=B^{\dagger} \gamma_{5} \wedge S_{u}
$$

- There is an unknown piece in B, but $B=D^{-1} \Sigma_{G}$ where Σ_{G} is a combination of "normal" propagators
- Σ_{G} is called generalized or sequential source
- New inversions are necessary
- To create Σ_{G}
- Fix time of sink (ie t_{y})
- Fix momentum at sink but not where the operator is inserted
- Choose how to project

Contractions

- Red part : generalized propagator
- Blue part : normal propagator

Just need to combine correctly Dirac, color, and space indices.

Renormalization issues

- We will use the RI-MOM scheme to renormalize non-perturbatively the bare quantities obtained (Zhaofeng's talk)
- Ideally (no mixing) multiplicative renormalization using scheme \mathcal{S} at scale μ

$$
\mathcal{O}^{\mathcal{S}}(\mu)=Z_{\mathcal{S}}^{\mathcal{O}}(\mu) \mathcal{O}_{\text {bare }}
$$

- Some renormalization constants have already been computed by other members of the collaboration $\left(Z_{A}, Z_{V}\right.$, ...)
- Perturbative theory can then be used to go to $\overline{\mathrm{MS}}$ scheme

g_{A}

- Gives information about the fraction of spin carried by quarks
- Well known experimentally from neutron beta decay ($\left.g_{A} \simeq 1.269\right)$
- Can be extracted with $O(z)=A_{\mu}^{u-d}=\bar{u} \gamma_{\mu} \gamma_{5} u-\bar{d} \gamma_{\mu} \gamma_{5} d$
- We will need to use chiral perturbation theory, to check for finite size effects, for cutoff effects
$<x>$
- Gives information about the fraction of energy carried by quarks
- Twist-2 operators

$$
\mathcal{O}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=\left(\frac{i}{2}\right)^{n-1} G_{f f^{\prime}} \bar{\psi}_{f} \gamma^{\left\{\mu_{1}\right.} \stackrel{\leftrightarrow}{D}^{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}^{\left.\mu_{n}\right\}} \psi_{f^{\prime}}-\text { traces }
$$

$\stackrel{\leftrightarrow}{D}=\overleftarrow{D}-\vec{D},\{\cdots\}$ means symmetrization on the Lorentz indices.

- In our calculation, we use the operator

$$
\mathcal{O}_{44}(x)=\frac{1}{2} \bar{u}(x)\left[\gamma_{4} \stackrel{\leftrightarrow}{D}_{4}-\frac{1}{3} \sum_{k=1}^{3} \gamma_{k} \overleftrightarrow{D}_{k}\right] u(x)
$$

where $D_{\mu}=\frac{1}{2}\left(\nabla_{\mu}+\nabla_{\mu}^{*}\right)$.
$<x>$

- Then the bare lowest moment of the quark distribution functions $\langle x\rangle$ is given by $(\vec{p}=0)$

$$
\langle x\rangle=\frac{1}{2 m_{N}^{2}}\langle N, \overrightarrow{0}| \mathcal{O}_{44}|N, \overrightarrow{0}\rangle=\frac{2}{m_{N}} \frac{C_{44}(t)}{C_{N}\left(t_{y}\right)} \quad\left(0 \ll t \ll t_{y}\right) .
$$

Here

$$
\begin{gathered}
C_{44}(t)=\sum_{\vec{y}, \vec{z}}\left\langle J\left(t_{y}, \vec{y}\right) \mathcal{O}_{44}(t, \vec{z}) \bar{J}(0,0)\right\rangle, \\
C_{N}\left(t_{y}\right)=\sum_{\vec{y}}\left\langle J\left(t_{y}, \vec{y}\right) \bar{J}(0,0)\right\rangle
\end{gathered}
$$

and $J(x)$ is the interpolating field for the nucleon.

Plot

- Conserved (or point split) current (10 confs)
conserved current vs time - $\beta=3.9$ - L=24, $\mathbf{T}=48-\mu=\mathbf{0 . 0 0 8 5}$

Plot

- Very preliminary (10 configurations)

- Close to the value found by italian members of the collaboration

Conclusion

- Wait for more data
- Future work to do
- Higher moments of GPDs
- Form factor at low transfer
- Disconnected diagrams

