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An example of hypercubic lattice artifacts
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Figure: Raw dressing function ∆L(p)/∆0(p) as
a function of p2/m2 for a 324 lattice and am = 1
(1000 configurations).
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H4 extrapolation method

Orsay lattice group collaboration.
Lattice study of the Green functions of QCD:

Gluon, quark and ghost propagators −→ ΛQCD .
Three-point Green functions −→ αs.

Comparison with perturbation theory in ultraviolet regime
=⇒ elimination of hypercubic artifacts from raw data.

Range of applicability of H4 extrapolation method:

F. de Soto, C.R., JHEP 0709:007,2007; arXiv:0705.3523.
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The democatic method

Apply a cylindrical cut to the raw data around the diagonal
(1, 1, 1, 1) of momentum space:

|pµ − pν | ≤ 2 , ∀µ, ν

Pretend that the remaining “democratic” points fall onto a
smooth “continuum” curve. fig
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The democatic method

Apply a cylindrical cut to the raw data around the diagonal
(1, 1, 1, 1) of momentum space:

|pµ − pν | ≤ 2 , ∀µ, ν

Pretend that the remaining “democratic” points fall onto a
smooth “continuum” curve. fig

Plot the propagator ∆(p2) rather than the dressing function
Z (p2):

∆(p2) =
Z (p2)

p2
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The democatic method

Apply a cylindrical cut to the raw data around the diagonal
(1, 1, 1, 1) of momentum space:

|pµ − pν | ≤ 2 , ∀µ, ν

Pretend that the remaining “democratic” points fall onto a
smooth “continuum” curve. fig

Plot the propagator ∆(p2) rather than the dressing function
Z (p2):

∆(p2) =
Z (p2)

p2

Have a critical look at figures of lattice papers!
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The free scalar field on the lattice

Lattice action:
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Lattice scalar propagator

Lattice spacing expansion:

∆L(p) =
1

p̂2 + m2

≈
1

p2 + m2 + a2

{
1
12

p4

(p2 + m2)2

}

+ a4

{
1
72

p42

(p2 + m2)3 −
2
8!

p6

(p2 + m2)2

}
+ · · ·

= ∆L(p
2, p4, p6, p8)

Smooth continuum extrapolation a → 0 and fixed p.
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Lattice scalar propagator

Lattice spacing expansion:

∆L(p) =
1

p̂2 + m2

≈
1

p2 + m2 + a2

{
1
12

p4

(p2 + m2)2

}

+ a4

{
1
72

p42

(p2 + m2)3 −
2
8!

p6

(p2 + m2)2

}
+ · · ·

= ∆L(p
2, p4, p6, p8)

Smooth continuum extrapolation a → 0 and fixed p.

Smooth rotational extrapolation pn → 0, n = 4, 6, 8, a 6= 0.
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Hypercubic symmetry

Work on hypercubic lattices with discrete symmetry group
H(4):

H(4) ≃ S(4) ⋉ Z (2)4

Lattice form factor: FL(p) ≡ FL(p1, p2, p3, p4)

FL(p) is invariant along each orbit O(p) in H(4):

O(p) ≡ {p′ = h(p) , ∀h ∈ H(4)}

All orbits of a discrete group are uniquely characterized by
a finite set of polynomial invariants.
For H(4), the algebraically independent polynomial
invariants are p2, p4, p6, p8.
Each orbit O(p) is also characterized by a subgroup of
H(4), the isotropy group of p which leaves p fixed.

fig
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Rotational limit .vs. continuum limit

Want to eliminate hypercubic artifacts from FL:
−→ Rotationally invariant observable depend only on p2.

Extrapolate at finite lattice spacing.

Hence the rotational limit is not the continuum limit.

There are still scaling violations in extrapolated
observables which are O(4) invariant.
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Renormalizable Quantum Field Theory (I)

Functional identity:

FL(p1, p2, p3, p4) = FL(p
2, p4, p6, p8)

L −→ ∞ =⇒ F L −→ smooth function.
Rotational limit is a smooth function of p2:

FL(p
2, 0, 0, 0) = FO(p2)

Smooth interpolation at finite L and fixed p2 with a2p2 ≪ 1:

F L(p
2, p4, p6, p8) = F L(p

2, 0, 0, 0) + p4 ∂F L

∂p4 (p2, 0, 0, 0)

+p6 ∂F L

∂p6 (p2, 0, 0, 0) + (p4)2 ∂2F L

∂(p4)2
(p2, 0, 0, 0) + · · ·
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Renormalizable Quantum Field Theory (II)

Lattice spacing expansion:

∂F L

∂pn (p2, 0, 0, 0) ∝ an−2
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Renormalizable Quantum Field Theory (II)

Lattice spacing expansion:

∂F L

∂pn (p2, 0, 0, 0) ∝ an−2

Why not FL(p1, p2, p3, p4) = F̂L(p̂1, p̂2, p̂3, p̂4) ?

p̂µ are the natural variables of PT in a box with PBC.

F̂L(p̂2, 0, 0, 0) is a smooth function of p̂2 and not of p2.

But no model-independent way to extract F̂L(p̂2, 0, 0, 0)
from raw data.

p̂2 is not an O(4) invariant.

Claude Roiesnel Reduction of hypercubic lattice artifacts



Introduction
From hypercubic to rotational symmetry

Comparative study of extrapolation methods

The Testbed
The local H4 method
The global H4 method

A controllable model

Use the free scalar field with mass ma = 1 as a
controllable model to generate the raw lattice data.

Do not use any analytical or physical information in the
analysis (except the smoothness assumption and naive
dimensional arguments). In particular do not use the
explicit knowledge of the mass.

The case of QCD is simpler as long as ΛQCD and the quark
masses are negligible in comparison to the momentum
scale.

Claude Roiesnel Reduction of hypercubic lattice artifacts



Introduction
From hypercubic to rotational symmetry

Comparative study of extrapolation methods

The Testbed
The local H4 method
The global H4 method

Semi-local fit

Independent extrapolation
at each p2:

∆L(p) = ∆E (p2) + c(p2)p4

∆E(p2) = ∆L(p
2, 0, 0, 0)

c(p2) =
c−1

p2 + c0 + c1p2

(for points with one orbit)
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Semi-local fit

Independent extrapolation
at each p2:

∆L(p) = ∆E (p2) + c(p2)p4

∆E(p2) = ∆L(p
2, 0, 0, 0)

c(p2) =
c−1

p2 + c0 + c1p2

(for points with one orbit)
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Comparison of the extrapolated dressing function ∆E (p2)/∆0(p2) as
a function of p2 on a 324 lattice (a = m = 1), between the democratic
method (open squares) and the local H4 method (black circles) -
1000 configurations .
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Global fit
Global extrapolation up to
order a4 over some
momentum window:

∆L(p) = ∆E (p2) + f1(p
2)p4

+ f2(p
2)p6 + f3(p

2)(p4)2

fn(p2) =

1∑

i=−1

ci ,n(p
2)−i

A global fit amounts to
solving a linear system.
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Global fit
Global extrapolation up to
order a4 over some
momentum window:

∆L(p) = ∆E (p2) + f1(p
2)p4

+ f2(p
2)p6 + f3(p

2)(p4)2

fn(p2) =

1∑

i=−1

ci ,n(p
2)−i

A global fit amounts to
solving a linear system. 0 2 4 6 8
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Comparison of the extrapolated dressing function ∆E (p2)/∆0(p2) as
a function of p2 on a 644 lattice (a = m = 1), between the global
methods with O(a2) artifacts (open losanges) and O(a4) (black
circles) - 1000 configurations .
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A χ
2-criterion for estimating the systematic errors

Quantitative estimation of
the systematic errors as a
function of lattice and
sample sizes:

χ2 =

p2
max∑

p2=1

(
∆E (p2) − ∆0(p2)

δ∆E (p2)

)2

For global fits, one must
include the covariance
matrix.
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A χ
2-criterion for estimating the systematic errors

Quantitative estimation of
the systematic errors as a
function of lattice and
sample sizes:

χ2 =

p2
max∑

p2=1

(
∆E (p2) − ∆0(p2)
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)2

For global fits, one must
include the covariance
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χ2/d .o.f as a function of p2
max on a 324 lattice (a = m = 1), for the

local a2 method (blue solid line), the global a2 method (red dotted
line) and the global a4 method (green dash-dotted line). The dashed
curves are the 95% CL lines.
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A QCD application in the guise of conclusion
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Extrapolated 324 lattice data at β = 6.4 for Z3 (left) and Z̃3 (right). The
solid line is the fit at four-loop order in the MS scheme. The vertical
dotted lines delimit the window of each fit.
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Anistropic lattices L3 × T

Cubic symmetry Oh within each timeslice.

Extrapolation towards a 3d-rotationally invariant limit for
each t (or E ≡ p0).

FL,T (p) −→ F L,T (~p2, E2) −→
L,T→∞

FO(p2)
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A few facts about (hyper)cubic groups

Cubic group

Oh has 10 conjugacy classes.

O+ = Oh ∩ SO(3) has 5 conjugacy classes.

Hypercubic group

H4 has 20 conjugacy classes.

H+

4 = H4 ∩ SO(4) has 13 conjugacy classes.
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