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Glossary!

EFT Effective Field Theory

xPT: Chiral Perturbation Theory

PQQCD: Partially Quenched QCD

PQxPT: Partially Quenched xyPT

WxPT: Wilson xPT (including lattice spacing effects)
tmQCD: Twisted mass QCD

tmyPT: Twisted mass xPT (including lattice spacing effects)
SxPT: Staggered xPT (including lattice spacing effects)
(P)GB: (Psuedo) Goldstone Boson

LEC: Low energy coefficient (in chiral Lagrangian)
VEV: Vacuum Expectation Value

LO: leading order

NLO: next-to-leading order, etc.

NP: non-perturbative
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Introduction and Overview

Lattice QCD is at the beginning of an exciting era
Terascale (— Petascale) computers
Unquenched simulations with m, — 250 MeV and below
Potential for few percent control over all systematics

Yet LQCD simulations require extrapolations
To physical light quark masses, m,, mq
from my = (my +mq)/2 ~ (2 = 3) X My phys
To the continuum limit, a = 0
from a ~ 0.05 — 0.1 fm, and from ag ~ 0.3

To “infinite” box size L > 1/m,
from L ~ 3 —5fm
can also work directly in e—regime (mL < 1)
From agy = 0 to agy = 1/137
From finite volume energies of two particles to infinite volume
scattering amplitudes

Theoretical input essential for these extrapolations!

S. Sharpe, “XPT for LQCD (I)", CNRS Marseille, 6/25/2008 — p.3/38



Widespread use of Unphysical Simulations

Staggered fermions with the “+/Det” trick
Theory unitary (at best) in continuum limit

“Mixed actions”
e.g. Overlap valence fermions on Wilson/tm sea

Partially quenched QCD
Valence quarks not degenerate with sea quarks
Gives more information to constrain chiral extrapolations

Matrix elements with unphysical kinematics
e.g. (K|Ow|mm) with all particles at rest
Ow inserts momentum

All require theoretical input to obtain physical results

XPT is the tool for most extrapolations

S. Sharpe, “XPT for LQCD (1)", CNRS Marseille, 6/25/2008 — p.4/38



Chiral Perturbation Theorly for LQCD

Provides:
Forms for chiral and L — oo extrapolations

Incorporation of operators with momentum insertion (Ow )
Extension to partially quenched theories: PQXPT

Incorporation of lattice artifacts, particularly those breaking continuum
symmetries

Wilson fermions (axial symmetry breaking): WXPT
Twisted mass (flavor symmetry breaking): tmXPT
Staggered fermions (taste symmetry breaking, v/Det trick): SXPT
Mixed actions: MAXPT
xPT expressions allow simultaneous extrapolations in m, L, and a,
Predictions for discretization errors in spectrum of lattice Dirac operator
Fitting forms for e-regime
CAVEAT: need to truncate XPT= additional systematic error
CAVEAT: SU(2) vs SU(3) XPT?
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Aims of these lectures

Emphasize lessons for LQCD from XPT
Provide introduction to “latticey” XPT

Use Wilson-tm fermions as example

Provide introduction to PQXPT

Show some applications

Make you care about whether m, — 0 is
unambiguous!

If it is, then PQQCD is likely ill-defined

S. Sharpe, “"XPT for LQCD (I)", CNRS Marseille, 6/25/2008 — p.6/38



Outline of Lecture 1

Some highlights

Review of continuum XPT
Focus on lessons for LQCD

Emphasize points relevant for subsequent

generalizations

Examples of results
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Highlights |

Phase diagram for tmLQCD: tmXPT predicts two possibilities

| e

m/a2

Aoki-phase along Wilson axis:
apparently holds for quenched theory, and

dynamical fermions at large a
(Wilson gauge action)

1/ a2

m/a2

First-order phase transition:
apparently holds for dynamical

fermions at small a
(Wilson or Symanzik gauge action)
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Highlights I

Comparing [Farchioni et alhep-lat/0410031] with tmXPT
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Qualitative comparison only

Difference in slopes for positive and negative m from 30% O(a)
contribution
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Overview: Highlights IlI

Fitting staggered pion properties with SU(3) SXPT [MILC collaboration 07]
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O(a?) taste-breaking essential for fit

PQ data essential to constrain parameters (e.g. 416 points/48 params)
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Overview: Highlights IV

Fitting Bk with SU(2) SXPT [RBC-UKQCD collaboration 08]
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PQ data allows test of predicted chiral logarithm
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Outline of Lecture 1

Some

nighlights

Review of continuum XPT

Examples of results
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Chiral symmetry of QCD éction

Fermionic part of Euclidean Lagrangian in matrix notation:

Locp = QPQL+QrPQr+Q, MQr+QrM'QL

Q" = (u,d,s), Qr r =Qr r(1£75)/2, Qr.r = [(1F75)/2]QL,R
In the massless limit, have G = SU(3)r, x SU(3)r symmetry:

QrL,r — UL, RQL.r and Qp p — @L,RU}E,R’ with Up, r € SU3)L,R
Add in mass term, e.g. M = diag(m., md4,ms), mqg # 0

axial transformations U = U}; broken

vector SU(3) subgroup (U;, = UpR) also broken, except if masses
degenerate

If treat M as complex “spurion” field then maintain full chiral symmetry
M — U, MUL, Mt — UrMTUL,
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Approximate chiral symmetry

Chiral symmetry is useful if M is small:
What is small? m,; < Agep ~ 300 MeV
More precise criterion in XPT: m, g , < Ay = 47 fr ~ 1200 MeV
(my +mg)/2 =4 MeV = SU(2), x SU(2)r is a good approximate
symmetry
ms ~ 100 MeV or mg , = Ay /2 = SU(3)r X SU(3)Rr is much less good

Important question for lattice applications of chiral perturbation theory
and thus PQQCD:

Is ms small enough that approximate chiral symmetry is useful to

lat

determine the quark mass dependence when m2* ~ mg?

If not, then can only use chiral symmetry to guide extrapolations in my,
and my.
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Spontaneous breaking of chiral symmetry

Vacuum breaks chiral symmetry
No parity doubling in spectrum: myx (P =+) # my(P = —)

Lightness of m, K and 7 consistent with their being pseudo-Goldstone
bosons (PGBs)

Order parameter
(qq) = ((qLqr + qraL)) ~ ABQCD #0, q=u,d,s

Lattice simulations = (qq) # 0

Success of chiral perturbation theory

Vector symmetry not spontaneously broken
If my = mg = ms then (au) = (dd) = (5s)

Based on experiment, and [Vafa-Witten| theorem
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Symmetry breaking (M = 0)
Condensate is LR flavor matrix:

Qj = (QLi0Qrjac) 5 UL QU

All choices of ();; are equivalent: “vacuum manifold”
Unbroken vector symmetry = (2;; = wd;; is in manifold
w # 0 implies chiral symmetry breaking:

SU@3)rL x SU3)r — SU(3)

~ N——
g H

Goldstone's theorem: 8 broken generators = 8 GBs (7, K, n)

S. Sharpe, "XPT for LQCD (1)”, CNRS Marseille, 6/25/2008 — p.16/38



Symmetry breaking (M # 0)

“Direction” of condensate depends on M:

V= —tr(QM") — tr(Q" M)

Conventional choice (M diagonal and positive) gives, when M — 0,

Qij =wdij, w=—(qq9) >0

Q=w — wULUL = H=SUQB)v:UL=Ur
Axial tranformations U, = U]T% are broken
A “twisted” mass, M — U MU, rotates vacuum, ) = wUIQJ

All twists are physically equivalent
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Building the effective field theory

We have the correct ingredients for an EFT:
Separated scales mpagp < Ay ~ My, Myucleon

Maintain scale separation by considering pap < 1GeV
Build EFT using only GB fields, static sources, and
spurions (/)

Construct most general local Lagrangian consistent with symmetries

Non-renormalizable, many unknown LECs (low energy constants)

Gives most general unitary S-matrix consistent with symmetries [Weinberg|

Order terms using power—counting
Small parameter is 102/A§< ~ M/Aqcp
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Representing GB fields

Conceptually most non-trivial step of construction:
EFT built from GBs (mesons), while QCD built from quarks
Choice of GB fields not unique (not discussed here)

“Promote”’ condensate to a field of fixed modulus:

Qij <QLaiaaaC@R,j,a,c>
W {qq)]
Tranforms under G = SU(3)1, x SU(3)r like Q2 (i.e. linearly):

N(x) - UL (z)UT,

Any VEV of X breaks G to H = SU(3) = desired symmetry breaking
Fluctuations correspond to GB (pion) fields. E.g. if (3) =1

Y(z) = exp (2in“(x)T"/f) , a=1,8

GB fields transform non-linearly under ¢
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Building Lo

|Gasser & Leutwyler]

Ingredients are 3, X7, M, MT and external sources (£,,, .., s, p)

> -
DMZ =
M —
M —

Usul, st upstul

0,8 — il % +i¥r, — UL (D, X)U},
s+ p

U MUL, M= UrMtUL,

Write all terms that are local and SU(3)r x SU(3)r, Euclidean, C & P
invariant (simplifying using %7 = 1 etc.)

Order in powers of 9% ~

Skipping details ...

M

S. Sharpe, “XPT for LQCD (I)", CNRS Marseille, 6/25/2008 — p.20/38



Leading order Lagrangian

At leading order have:
2 2
B
£® = fztr (DMEDMZT) - %tr(MZT ot
Two unknown LECs: f and By
Expect f ~ Bg ~ AQCD
Set M to physical value:

M = diag(my, ma, ms) = il
Determine VEV (X) by minimizing potential:

_f"Bo
2

V@ = tr (M[z:T + z])

If all mgq > 0, find (3) =1
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Aside on vacuum structure

2
1%”:~4i§@u(mﬂzﬁ+zb

For two flavors:
If we use (3) = exp(if7i - 7), then ([T + 3]) = 2cosf x 1
Thus V(2) oc —tr(M) cos 6
So if trM > 0, (X) = 1, while if trM < 0, (¥) = —1

For degenerate quarks, have first order phase transition at m =0

@) |
Qsi:\ 100
For three flavors, > = —1 not QAN zD(gé‘l’)/
possible SN
: . ~\ |
Interesting phase structure if some m,
| -
mg < 0 [Dashen,Creutz| -ms
m., = 0 is not special if mg4 # 0: e
b fSU3)L x SU(3) T N e -
no subgroup o X N
. s P b f -10 §§\
IS restored p2 D(g_ol 10 &kz D((l) ol 0?)
N -
/ i
ms > 0 fixed
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Leading order (P)GB properties

Insert 3 = exp(2in/f), with 7 = 7“7, into leading order (LO) L

2 2
B
£® = fztr (aﬂzauzT) - %tr(M[z* +3))
= tr(8,md,m) + 2By tr(Mn?)
1 230
+3pbr(lm Oumllm, Oum]) — 377 tr(Mn*) + O(x°)
m%GB o< M
For degenerate quarks, m2 = 2Bgmy
By related to condensate: By = —(qq)/f?

Matching currents = f = fx

Sequence of non-renormalizable interactions involving even numbers of
PGBs, size determined by f and BogM
= LO XPT predictive: e.g. 6 pion interactions given by 4 pion term
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LO mass predictions for real QCD

Determine physical particles using U(3)y (7r — Uy 7 U‘T/)

=™ 4 ot Kt
2 12 V2 V2
— T _ n K9
= NG IR v
K~ KO _2n
2 2 V12
Inserting into —2Botr(Mn?) find
= BO(mz ‘|‘m3) i F ]

Charged particle masses are simple: mq

m£+m8—|—EMz13 <me:m“;md>

mK+—|—mKO B

= 2
2m77+ 2my
7w and 1 mix, but with small angle 6 ~ (m, —mg)/ms < 1
mio = m?rJr + 0(6?°m%) + EM,
m2 = @my +mi] —m2)/3+0(0*mk)
~~ ~ $ _
(566 MeV)2

(548 MeV)?2
Cannot determine quark masses from XPT since scale dependent

Always appear in combination y = 289 M which | use below

S. Sharpe, "XPT for LQCD (1)”, CNRS Marseille, 6/25/2008 — p.24/38



Lessons for lattice simulations (1)

+ LO XPT works to ~ 10% in GMO o5l
relation i

Indeed, miJr /mg ~ const. seen in
all simulations (since 1983)

E.g. quenched Wilson fermions
[Bhattacharya95]

0.05 #

. . . . hvs
[vertical lines indicate m%Y "] N AR
0 0.02 0.04 0.06 0.08

mnp

+ Can vary m, in simulations (more “knobs to turn” than in real QCD), and

XPT describes dependence on quark masses in terms of the physical
LECs
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Lessons for lattice simulations (1)

+ If simulate isospin limit m, = my then close to real QCD:
my, /mg ~ 1/2 does not lead to large isospin violations

Differences are suppressed by (m, —mg)/ms (PGBs) or by
(mw —mgq)/Aqcp (other hadrons)

— Calculating isospin breaking effects (e.g. m”, —mZ2) is hard

Quark mass contributions involve disconnected diagrams and are small

EM contributions are comparable and not easy to calculate (but recent

progress)
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Next order chiral Lagrangian

At NLO have 10 LECs and 2 “high-energy coefficients" :

£ = —Lite(D,2D,YN)? - Ly tr (DD, YN tr(D, 2D, 5T
+L3tr(D,~D,~TD, %D, %)
+Lstr(D,XTD, S)tr(x TS + 2Tx) + L tr(D, 2T D, ) xS 4+ 2Tx])
—Lg [tr(XTE — ETx)}Q — L7 [tr(XTE — ZTx)} g Lsg tr(XTZXTE + p.c.)
+ Lo itr(Luy DuXDy ST 4 poc) + Lig tr(Lu SR, 3T
+H1 tr(Lyy Ly + p.c.) + Hatr(xx)

L; are “Gasser-Leutwyler coefficients”
Fundamental parameters of QCD, akin to hadron mass ratios
A subset can be determined experimentally to good accuracy

A different subset is straightforward to determine on the lattice

H1 o give contact terms in correlation functions
At NNLO there are 90 LECs and 4 HECs! [Bijnens et al]
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Power counting in XPT (M = 0)

7'('2 7T2
£® ~ (aw)2+—(fi) +..
(Om)* w2 (om)?
R A e

Consider 77 scattering (with, say, dim. reg. to avoid power divergences):

2 o\ 2
>J,;<~p—2 e >%<.i< (%)
(2) . ln( ?/u?)

Have expansion in p*/f? (and mpcp/f*) up to Iogs
Theory is predictive up to truncation errors
E.g. at LO, A(mm — 7m) predicted in terms of f, up to errors of relative
size p? / f?
Only a finite number of diagrams and LECs at each order, so can always

make predictions

Non-analytic behavior (“chiral logs”) does not involve new LECs
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True expansion parameter?

LEC's run with pu:
dLcr/dIn(p) ~ 1/(47)* = Lorn(2u) — Lorn(p) ~ 1/(4m)?
So guess ( “naive dimensional analysis”):
Lor(p~m,) ~ 1/(4r)?
Works well phenomenologically: —1 < Lay(47)* < +1
Implies expansion parameter is pQ/Ai, with A, =4nf

For M #0, p*/A2 — (p* or migp)/A2
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Lessons for lattice simulations (I1l)

+ Use XPT to extend reach of lattice to multiparticle processes
Calculate LECs from lattice simulations using simple physical
quantities (e.g. masses)
Use XPT + LECs to determine multiparticle processes (scattering
amplitudes, mm — 4m, etc.) that are difficult or impossible to
determine directly using simulations
Determining A(K — mm) using unphysical, but more accessible, matrix

elements [Rome-Southampton, Laiho-Soni]

— Always have truncation error when using XPT

Need to include NNLO terms (at least approximately) to determine
NLO coefficients (L¢ar)

Fitting requires (approximate) NNNLO coefficients to work up to
mP"s [MILC]
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Outline of Lecture 1

Some

nighlights

Review of continuum XPT

Examples of results
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Results from XPT at NLO

Charged PGB masses:
LO: m%GB,o = (Xq1 + Xq2)/2 = 2Bo(mq1 + mq2)/2

NLO—tree:

(4)
dmpap ~ L. ~xL %% ~ x(167%L) mPGB -
NLO—-loop:

L® 2 2
2 X 1 MpPGB,0 MPGB,0
OMpap ~ @ ~ 77 Jg Pmicgy X A2 " ( e

p 3\
g 3L, — L
m2. =xe{ 1+ F[@Lg — Ls)xe + (2L6 — La)(2x¢ + Xs)] + W6 -
valche S;’a ) - i
\ logs y
2 2 m2 m2
szm—;rln(m—;) , Ly= 7| —
X M AX K
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Lessons for lattice simulations (1V)

( )
8 3L — L
mie = xe § 1+ 5 (2Ls — Lo)xe + (2Ls — La)(@xe + x)] + =
valche S:;a h e g
\ logs J
Non-analytic terms important mpi~2/m | at NLO
at small masses 6'632
ms = 0.08 GeV, f =0.093 GeV, 6.25
_ -3 — 103 6.2
L5 =1.45 x 10 , Lg =10 , 6. 15
Ly=Lg=0 : : : : —ml /ms
0.1 0.20.3 0.4 0.5~/
[Bijnens, hep-ph/0409068] 6. 05 \/

Must see chiral logs to have convincing results

Using PQ simulations allows separation of L;
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Further examples of chiral logs

IK 2 5 1 3
K14+ (L - “Lr—-Lg—°-L
fo 12 S 5)(Xj Xﬁz 8 17K T3 71
valence e
logs
fK/f _pi at NLO
1. 225
Non-analytic terms important 1.2
at small masses 1-1112
ms = 0.08 GeV, f = 0.085 GeV, 1.125

Ly =1.45%x10"3, Ly =0

01 0.2 0] 0.4 0 5mnl/ms
1.075
1.05

Good to use “Golden Ratios” in which chiral logs cancel [Becirevic03,04]

Some quantities have enhanced chiral logs, e.g. (%),

~ In(m? /1)
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Volume dependence from IXPT

For single particle matrix elements pion (or more generally, PGB) loops
give leading finite volume correction [Gasser+Leutwyler]

Predicted along with coefficient of chiral log:

Replace momentum integral with sum
L@

1 1
O 4 () ~ b Zeoe (et

fpi in box at NLO

E.g. fﬁ at a = 0.1 fm, with 0. 11
L = 2.4 fm (thick), 3.2 fm 0. 105
and oo 0.0544 0.15 0.2 0. ogn! /m.s
ms = 0.08 GeV, f = 0.08 GeV, 0.095 /

Ls =145%x 1073, Ly =0 0.09
0. 085

Formulae extended to higher order for some quantities [Liischer, Colangelo]
LO contribution only trustworthy as indicator of size of FV effect

Inclusion of volume dependence in XPT fits is now standard
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Other quantities involving PGBs

SU(2) XPT complete at NNLO, including electroweak interactions
Several predictions despite 53 LECs at NNLO (excluding electroweak)!

Many quantities relevant for lattice simulations, e.g.
Pion scattering amplitude
Form factors of PGBs (vector and scalar)
Semileptonic form factors (K — )

B, K — nr

SU(3) XPT (including electroweak) largely extended to NNLO

Convergence?. [Bijnens, hep-ph/0401039,hep-ph/0409068]
ag(rm — 7m) = 0.159 + 0.044 4 0.016 = 0.219+7? c.f. 0.220(5)
N =~ =~

LO NLO NNLO
= 1 0.169 + 0.051 (fit
fx/f - + (fit)

LO NLO NNLO
But for ml%GB, NNLO terms larger than NLO
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Extension to “heavy’ particles

Heavy-light mesons in 1/mp expansion [Wise, Burdman & Donoghue]

Fp~Fpo(l4+ mi: +miln(mg)+...)
-~ L

~
analytic chiral log

Similar expansion to those for PGB properties

Non-analytic terms involve additional coefficient g, g =
Presence of nearby B* invalidates SU(3) XPT[Becirevic et all

Baryons [Jenkins & Manohar| and Vector mesons [Jenkins et al]

Mpg ~ My + mfr + grHH' mf’r—l— miln(mw) + mi 4+ ...
~ Y—— ——

analytic leading loop subleading loop
Non-analytic terms involve additional coefficients (e.g. g.nN)

Expansion in powers of my /Ay (c.f. (mx/Ay)? for mesons)
= Poorer convergence

(Improve using “finite range regularization”? [Leinweber et al] )
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