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Outline of Lecture 3

Partial quenching and PQχPT

What is partial quenching?

Developing PQχPT
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What is Partially Quenched QCD?
Explain with example of pion correlator:
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ūγ5d(~x, τ) d̄γ5u(0)

=
1

Z

Z
DU

Y

q

det(D/ +mq)e−Sgauge
X

~x

tr

»
γ5

„
1

D/ +md

«

x0

γ5

„
1

D/ +mu

«

0x

–

= x γγ
5 5Σ 0

gauge
+det

u
V

d
V

∝ f2
πe−mπτ +exp. suppressed

“sea” quarks in determinant; “valence” in propagators

Partial Quenching: mval 6= msea—many different mval for each msea

Numerically cheap—can we make use of this extra information?
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PQQCD needs PQχPT
Use PQQCD as a tool to learn about QCD, not as a model of QCD

PQQCD is unphysical, e.g. not unitary

Intermediate and external ”states” differ, e.g. πV πV → πSπS → πV πV

Need PQχPT in order to

extrapolate to QCD

⇒ must be in the quark-mass

regime where χPT is valid

Extends the range over

which can match lattice

and χPT
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Subspace with mval = msea are physical QCD-like theories

PQχPT must match χPT on subspace

LECs in PQχPT include those appearing in χPT, plus a few (sometimes

none) additional unphysical ones
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Historical comment on nomenclature
Why called partially quenched? Why not partially unquenched?

Bad old days: quenched approximation msea → ∞

⇒ det(D/ + mq) → constant

⇒ No quark loops

⇒ ZQCD → ZQQCD =
R

DUe−Sgauge = Zgauge

Unphysical nature of quenched QCD shows up various ways, e.g.

〈ψ̄ψ〉 → ∞ as mval → 0

Partial quenching is in one sense a less extreme version of quenching, and
thus the name

If msea ≫ ΛQCD then PQQCD, like quenched QCD, only qualitatively
related to QCD

Consider here only the case when msea ≪ ΛQCD so one can use χPT

and relate PQCD to QCD quantitatively
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Morel’s formulation of (P)QQCD
IDEA: commuting spin- 1

2
fields (ghosts) eq give determinant which cancels

that from valence quarks
Z

Dq̄Dq e−q̄(D/ +mq)q = det(D/ + mq)

Z
Deq†Deq e−eq†(D/ +mq)eq =

1

det(D/ + mq)

To formulate PQQCD need three types of “quark”

valence quarks qV 1, qV 2, . . . qV NV
(NV = 2, 3, . . . )

sea quarks qS1, qS2, . . . qSN (N = 2, 3)

ghosts eqV 1, eqV 2, . . . eqV NV
(NV = 2, 3, . . . )

Ghosts are degenerate with corresponding valence quarks
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Morel’s formulation (cont.)
Partition function reproduces that which is simulated:
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S. Sharpe, “χPT for LQCD (III)”, CNRS Marseille, 6/27/2008 – p.8/46



Compact Notation
Collect all fields into (N + 2NV )-dim vectors:

Q =

„
qV 1, qV 2, . . . , qV NV| {z }

valence

, qS1, qS2, . . . , qSN| {z }
sea

, eqV 1, eqV 2, . . . , eqV NV| {z }
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«

Q
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„
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, q̄S1, q̄S2, . . . , q̄SN| {z }
sea

, eq†V 1, eq†V 2, . . . , eq†V NV| {z }
ghost

«

M =

„
mV 1, mV 2, . . . , mV NV| {z }

valence

, mS1, mS2, . . . , mSN| {z }
sea

, mV 1, mV 2, . . . , mV NV| {z }
ghost=valence

«

Then can write action and partition function as:

SPQ = Sgauge + Q(D/ + M)Q

ZPQ =

Z
DUDQ̄DQ e−SPQ
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Formal representation of PQ correlator

CPQ
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What have we learned about PQQCD?
Well defined statistical system describing correlators in Euclidean space

Can use to represent individual contractions in complicated processes, e.g.

ππ → ππ

Regained unitarity, but at the cost of introducing ghosts

Shows the ways the PQ theory is unphysical

violates spin-statistics theorem

loses causality and positivity in Minkowski space

loses reflection positivity in Euclidean space

Unphysical nature shows up in various ways:

Double poles in correlation functions

Correlators involving multi-particle states do not have exponential fall-off in

time, and have contributions which diverge in infinite volume ⇒ cannot

define scattering amplitudes [Lin et al]

Can we develop an EFT describing PQQCD including its unphysical

nature?
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Key property of PQQCD
“Anchored” to physical QCD-like theories

If mV u = mSj and mV d = mSk then valence correlator is physical:

CPQ
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PQ

Z
DUDQDQ e−SPQ
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Example of enhanced (V ↔ S) symmetry in PQ theory
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Methods for developing PQχPT
“Supersymmetric” method based on Morel’s formulation [Bernard &

Golterman]

“Replica” method adjusting loop contributions by adjusting Nsea

[Damgaard & Splittorf]

Formalizes “Quark-line” method accounting by hand for quarks in
loops [Sharpe]

Give same results to date—likely equivalent

Use supersymmetric method here (with addition of some quark-line

method when considering staggered fermions)
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Symmetries of PQQCD

Q =

„
qV 1, qV 2, . . . , qV NV| {z }

valence

, qS1, qS2, . . . , qSN| {z }
sea

, eqV 1, eqV 2, . . . , eqV NV| {z }
ghost

«

Action of PQQCD looks like QCD

SPQQCD = Sgauge + Q(D/ + M)Q

Naively, when M → 0 have graded version of QCD chiral symmetry:

QL,R −→ UL,RQL,R , QL,R −→ QL,RU†
L,R UL,R ∈ SU(NV + N |NV )

Apparent symmetry is SU(NV +N |NV )L × SU(NV +N |NV )R × U(1)V

In fact, there are subtleties in the ghost sector, but can ignore in
perturbative calculations [Sharpe & Shoresh]
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Brief primer on graded Lie groups
U is graded: contains both commuting and anticommuting elements:

U =

0
BB@

A B

C|{z}
NV +N

D|{z}
NV

1
CCA , A, D commuting, B, C anticommuting

If U ∈ U(NV +N |NV ) (fundamental representation) then

UU† = U†U = 1 , [with (η1η2)∗ ≡ η∗
2η∗

1 ]

Supertrace maintains cyclicity:

strU ≡ trA − trD ⇒ str(U1U2) = str(U2U1)

For U ∈ SU(NV +N |NV ), superdeterminant is unity:

sdetU ≡ exp[str(ln U)] =
det(A − BD−1C)

det(D)
⇒ sdet(U1U2) = sdetU1sdetU2
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Examples of SU(NV + N |N) matrices

U =

0
@ SU(NV + N) 0

0 SU(NV )

1
A ⇒ sdetU = 1

U =

0
@ eiθNV 0

0 eiθ(N+NV )

1
A ⇒ sdetU =

(eiθNV )N+NV

(eiθ(N+NV ))NV
= 1

An overall phase rotation is not in SU(NV +N |N)

U =

0
@ eiθ 0

0 eiθ

1
A ⇒ sdetU =

eiθ(N+NV )

eiθNV
= eiθN

Thus U(NV +N |NV ) = [SU(NV +N |NV ) ⊗ U(1)]/ZN

Group structure different if N = 0 (quenched theory)
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Follow same steps as for QCD
Expand about M = 0

A posteriori find that must take chiral limit with mV and mS in fixed ratio

Divergences if mV → 0 at fixed mS [Sharpe]

Graded chiral symmetry is broken by condensate

Have Goldstone bosons and fermions (but both spin 0)

Develop low-energy EFT based on symmetries and symmetry breaking

Weaker theoretical basis than usual χPT since underlying theory is

unphysical

PQχPT matches unphysical features of PQQCD (e.g. double poles)

Most LECs in PQχPT are the same as those in χPT because QCD is a
subset of PQQCD

Use PQQCD to determine physical parameters of QCD (and/or to improve

chiral extrapolations)
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Symmetry breaking in PQQCD
Symmetry group (M → 0): G = SU(NV +N |NV )L ×SU(NV +N |NV )R

For M diagonal, real and positive [Vafa & Witten] implies graded vector
symmetry not spontaneously broken

Quark and ghost condensates equal if mV = mS → 0

〈qV q̄V 〉 = 〈q̃V
¯̃qV 〉 = 〈qS q̄S〉 = ω

Spontaneous chiral symmetry breaking in QCD ⇒ ω 6= 0

⇒ We know pattern of symmetry breaking. Introducing order parameter

Ωij = 〈QL,i,α,cQR,j,α,c〉PQ −→
G

UL Ω U†
R

we know Ω = ω × 1 with standard masses ⇒ vacuum manifold is

SU(NV + N |NV )

Symmetry breaking is G → H = SU(NV + N |NV )V

Can derive Goldstone’s theorem using Ward identities for two-point
Euclidean correlators

(N + 2NV )2 − 1 Goldstone “particles” created by operators Qγµγ5T aQ

with T a a traceless generator of SU(NV + N |NV )
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Moving to EFT
In QCD, proceed as follows:

Having established GB poles in two-point functions, we know that they will

also be present in higher-order correlation functions, and in cuts

χPT reproduces this behavior, while incorporating the chiral Ward

identities, and yielding physical S-matrix

In PQQCD, situation is worse:

Have GB poles in two-point functions

Have Ward identities between correlation functions

No Hamiltonian so cannot show that same poles appear in higher-order

correlation functions, or in cuts (no complete sets of states)

In fact, can show that there are double poles (but no higher) in neutral

correlators [Sharpe & Shoresh]

Cannot rely on Weinberg’s argument to determine EFT since no S-matrix

Only “anchor” is fact that know EFT for QCD-like subspace

For PQQCD must simply assume minimal change from QCD: assume that
have local Leff , constrained by symmetries

Saturates Ward identities and reproduces double poles
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Constructing LPQ: choice of Σ
Follow method used for QCD:

Ω/ω → Σ(x) ∈ SU(NV + N |N) , Σ −→
G

UL Σ U†
R

For standard masses, 〈Σ〉 = 1, so define Goldstones by

Σ = exp

»
2i

f
Φ(x)

–
, Φ(x) =

0
@ φ(x) η1(x)

η2(x) eφ(x)

1
A

sdetΣ = 1 ⇒ strΦ = trφ − treφ = 0

QCD GBs contained in Φ

Φ(x) =

0
BBBB@

0 0 0

0 π(x) 0

0|{z}
NV

0|{z}
N

0|{z}
NV

1
CCCCA

⇒ Σ =

0
BB@

1 0 0

0 ΣQCD 0

0 0 1

1
CCA

Building blocks for PQχPT as for χPT, e.g.

Lµ = ΣDµΣ† → ULLµU†
L , str(Lµ) = 0

Power counting as in χPT
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PQ chiral Lagrangian [Bernard & Golterman]

L(2) =
f2

4
str

“
DµΣDµΣ†

”
− f2

4
str(χΣ† + Σχ†)

L(4) = −L1 str(DµΣDµΣ†)2 − L2 str(DµΣDνΣ†)tr(DµΣDνΣ†)

+L3 str(DµΣDµΣ†DνΣDνΣ†)

+L4 str(DµΣ†DµΣ)str(χ†Σ + Σ†χ) + L5 str(DµΣ†DµΣ)[χ†Σ + Σ†χ])

−L6

ˆ
str(χ†Σ + Σ†χ)

˜2 − L7

ˆ
str(χ†Σ − Σ†χ)

˜2 − L8 str(χ†Σχ†Σ + p.c.)

+L9 istr(LµνDµΣDνΣ† + p.c.) + L10 str(LµνΣRµνΣ†)

+H1 str(LµνLµν + p.c.) + H2 str(χ†χ) + WZWPQ

+LPQOPQ

χ = 2B0M

Same form as for QCD with tr → str plus one extra term (OPQ)

How do the LECs related to those of QCD?
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Relating PQχPT to χPT
If choose Σ to lie in QCD subspace

Σ =

0
BB@

1 0 0

0 ΣQCD 0

0 0 1

1
CCA

and sources do not connect subspaces, then

L(2,4,... )
PQχPT (Σ) → L(2,4,... )

χPT (ΣQCD)

If external fields in correlation function are from sea sector, then can show
that all valence and ghost contributions cancel in intermediate states

⇒ Σ takes the form given above

PQχPT calculation collapses to one in χPT

Thus LECs in PQχPT are equal to those in χPT

Results in the chiral regime from PQQCD give information about
physical LECs
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What about OPQ?
Starting at NLO, at each order there are an increasing number of PQ
operators that vanish on QCD subspace

At NLO, only one such operator [Sharpe & Van de Water]

OPQ = str(DµΣDνΣ†DµΣDνΣ†)

− 1

2
str(DµΣDµΣ†)2 − str(DµΣDνΣ†)str(DµΣDνΣ†)

+ 2str(DµΣDνΣ†DµΣDνΣ†)

Vanishes if Σ → ΣQCD due to Cayley-Hamilton relations for 3× 3 matrices

Does not vanish for general ΣPQ

Appears in L
(4)
PQχ with additional LEC

Same is true for standard χPT if N ≥ 4

OPQ contributes to ππ scattering at NLO, but to mπ and fπ only at
NNLO
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Why is OPQ present?
Because PQQCD allows isolation of individual Wick contractions, unlike
QCD

For example, π+K0 scattering in QCD has two contractions

+

Can separate these contractions in PQQCD, e.g.

OPQ contributes to the PQQCD process, but not that in QCD

Shows how PQQCD differs from QCD even if mV = mS
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Calculating in PQχPT
PQ Lagrangian at LO:

L(2) =
f2

4
str

“
DµΣDµΣ†

”
− f2

4
str(χΣ† + Σχ†)

Insert expansion in Goldstone fields:

Σ = exp

»
2i

f
Φ(x)

–
, Φ(x) =

0
@ φ(x) η1(x)

η2(x) eφ(x)

1
A , strΦ = 0

L(2) = str(∂µΦ∂µΦ) + str(χΦ2) + . . .

= tr(∂µφ∂µφ + ∂µη1∂µη2 − ∂µη2∂µη1 − ∂µ
eφ∂µ

eφ)

+ tr

2
4(φ2 + η1η2)

0
@ mV 0

0 mS

1
A

3
5 − tr(eφ2mV ) − tr(η2η1mV )

φ part is like in QCD, except includes both valence and sea quarks

Propagator for “charged” meson q̄1q2 (either valence of sea) is

1/(p2 + m2
12), m2

12 = (χ1 + χ2)/2
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LO calculation (cont.)

L(2) = tr(∂µφ∂µφ + ∂µη1∂µη2 − ∂µη2∂µη1 − ∂µ
eφ∂µ

eφ)

+ tr

2
4(φ2 + η1η2)

0
@ mV 0

0 mS

1
A

3
5 − tr(eφ2mV ) − tr(η2η1mV )

eφ terms have wrong signs

Naively, propagator for “charged” ghost mesons ēq1eq2 is −1/(p2 + m2
12),

m2
12 = (χ1 + χ2)/2

But potential not minimized and functional integral not convergent!

More careful treatment of symmetries of PQQCD, maintaining convergence

of ghost functional integral, concludes that naive result is OK in

perturbation theory (but not non-perturbatively, e.g. in ǫ-regime, where

should change eφ → ieφ, Σ† → Σ−1) [Sharpe & Shoresh]

Goldstone fermion propagators can have either sign (no convergence

problems); actual signs important for cancellations
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What about Φ0?

How implement str(Φ) = tr(φ) − tr(eφ) = 0?

1. Use a basis of generators which is straceless:

Φ =
P

a ΦaT a with str(T a) = 0

Analagous to not including the η′ in QCD χPT

Clumsy in practice and not used

2. Include identity component but then “integrate out”

Φ → Φ + Φ0/
√

N so that strΦ =
√

NΦ0

LPQχ → LPQχ + m2
0str(Φ)2/N

Calculate propagators, then send m2
0 → ∞ within them

To make formally correct, must regularize with a cut-off (e.g. lattice)

so that (∂µΦ0)2 < m2
0Φ2

0 (trivial decoupling)

Really just a trick to implement stracelessness

Method used in practice

Introducing Φ0 has advantage of allowing use of “quark line” basis:

Φij ∼ QiQj for all i, j

S. Sharpe, “χPT for LQCD (III)”, CNRS Marseille, 6/27/2008 – p.28/46



Quark lines and double poles
“Charged” particle propagators are simple:

〈ΦijΦji〉 = ± 1
p2+(χi+χj)/2

=

j

i
Neutral propagators have double poles:

L(2) =

N+2NVX

j=1

ǫj(∂µΦjj∂µΦjj + mjΦ
2
jj) + (m2

0/N)(
X

j

ǫjΦjj)
2

ǫj =

8
<
:

+1 valence or sea quarks

−1 ghosts

Can simply invert with linear algebra tricks. Schematically, for external
valence quarks have “hairpin” sum:

+ + + ...
V V V V VS
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Neutral propagator
Result after m2

0 → ∞ for N = 3 [Bernard & Golterman; Sharpe & Shoresh]

〈ΦiiΦjj〉 =
ǫiδij

p2 + χi
−

1

N

1

(p2 + χi)(p2 + χj)

(p2 + χS1)(p
2 + χS2)(p

2 + χS3)

(p2 +M2
π0

)(p2 +M2
η )

Simplifies for degenerate sea quarks:

〈ΦiiΦjj〉 =
ǫiδij

p2 + χi
−

1

N

(p2 + χS)

(p2 + χi)(p2 + χj)

Manifestly unphysical double pole for χi = χj

Residue is then (χi − χS)/N , so vanishes for physical subspace

Can show from symmetries of PQQCD that if charged propagators have

single poles, then neutral have double (and no higher) poles [Sharpe &

Shoresh]

Propagator becomes physical if i, j are sea quarks, e.g. for degenerate sea

〈ΦSSΦSS〉 =
1

p2 + χS

„
1 −

1

N

«

Recover projection against η′
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Outline of Lecture 3

Partial quenching and PQχPT

What is partial quenching?

Developing PQχPT

Results and outlook

mu = 0 and the validity of PQ theories
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Sample calculation: m2
π

Calculations are straightforward extension of standard χPT

Mass-squared of “pion” composed of valence quarks V 1, V 2

Quark-line diagrams for 1-loop contributions

=

+ +

+ + + ......

LO four-pion vertices have single strace, so are ”connected”

Manifest cancellation between contributions from commuting and

anticommuting particles
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NLO result for m2
π

To simplify expression for loop contributions, assume N degenerate sea
quarks and mV 1 = mV 2 6= mS

m2
V V = χV

„
1 +

1

N

2χV − χS

Λ2
χ

ln(χV /µ
2) +

χV − χS

NΛ2
χ

+
8

f2
[(2L8 − L5)χV + (2L6 − L4)NχS ]

«

Reduces to QCD-like result when χV → χS

χV and χS provide separate dials for determining 2L8 − L5 and 2L6 − L4

Result in PQ mass-plane depends on physical LECs

Unphysical nature of result clear from divergence in χS ln χV as χV → 0

In practice, expansion breaks down only for very small χV

Has been used to determine 2L8 − L5 which, using continuum χPT,
constrains physical mu
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Status of PQχPT calculations
It is now standard to extend any χPT calculation to PQχPT

Many quantities considered at NLO: pions, baryons, vector mesons,
scalar mesons, heavy-light hadrons, weak matrix elements (BK ,

K → ππ), NEDM, pion scattering, . . .

First calculations at NNLO for pion properties

PQ effects also included in tmχPT, staggered χPT and mixed action
χPT
Most non-trivial example is baryons, where need to use a set-up in
which all three quark lines are explicit

Most striking result is for scalar meson correlators, where hairpin
propagators lead to unphysical negative contributions at long
distances

In general, can use PQχPT to determine form of expected results for
individual contractions (e.g. connected and disconnected contributions to

π0 propagators in tmLQCD)

Most extensive practical use is in MILC improved staggered simulations

Potentially a powerful practical tool, but important to test given
incomplete theoretical justification
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A final fun example: L7

L(4)
χ = · · · − L7str (χΣ† − Σχ†)2 + . . .

Contributes to PGB masses only for non-degenerate quarks

In QCD, only significant contribution is to mη

4m2
K − m2

π − 3m2
η =

32(m2
K − m2

π)2

3f2
(L5 − 6L8 − 12L7) + chiral logs

Direct lattice calculation of mη possible but challenging

Can we determine L7 and thus mη indirectly using PQQCD?

Yes, from residue of PQ double pole [Sharpe & Shoresh]
R

d3x〈ΦV 1,V 1(t, ~x)ΦV 2,V 2(0)〉R
d3x〈ΦV 1,V 2(t, ~x)ΦV 2,V 1(0)〉

˛̨
˛̨
˛
mV 1=mV 2

−→
t → ∞

Dt

2MV V

With N = 3 degenerate sea quarks find:

D =
χV − χS

N
− 16

f2

„
L7 +

L5

2N

«
(χV − χS)2 + known chiral logs

PQ simulations allow use of multiple χV ⇒ better signal?
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Outline of Lecture 3

Partial quenching and PQχPT

mu = 0 and the validity of PQ theories
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Meaning of “Ambiguity in mu = 0”
Consider QCD with md and ms fixed (e.g. at their physical values), but
send mu → 0

No increase in symmetry

m2
π ∝ (mu +md) + NLO does not vanish

Contrast this with sending both mu,md → 0:

SU(2)L × SU(2)R becomes exact, and m2
π → 0

But doesn’t mu → 0 have unambiguous meaning at the level of the lattice
action?

Naively would seem so if use fermions with exact chiral symmetry
(e.g. overlap)

But there are (infinitely) many choices for overlap kernel, which
assign different topological charges to “rough” configurations

If we set mu = 0 using two different kernels, will we obtain, in the
continuum limit, the same value for mass ratios, e.g. mπ0/mproton?

The standard answer is YES

[Creutz, PRL 92, 162003 (2004)] argues NO!

This is the potential ambiguity.
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Restate issue in Nf = 1 theory
Can formulate the issue also in Nf = 1 QCD, a simpler setting

No PGBs: spectrum consists of “η”, “∆”, etc.

With two overlap operators having different kernels, if one sets m = 0,
and takes the continuum limit (not an easy task in practice!) will one get

the same value for mη/m∆?

The standard answer is YES

[Creutz, PRL 92, 162003 (2004)] argues NO

Note that for a 6= 0 will certainly have “kernel-dependent”
discretization errors—the issue is what happens when a→ 0.

Use this formulation in subsequent discussion:

Note that 〈ψ̄ψ〉 6= 0, although this breaks no symmetry
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Standard argument—part I
In perturbation theory, if have chiral symmetry (as with overlap), quark
mass is renormalized multiplicatively, to all orders in PT:

m(a) = Mg(a)γ0/β0 [1 +O(g2)]

aΛ = e−1/(2β0g2)g−β1/β2
0 [1 +O(g2)]

β0 = (11 − 2Nf/3)/(16π2)

This is uncontroversial. If it were the whole story, it would imply that,
once g(a) is small enough (so the universal parts of the β-function and

anomalous dimension dominate) setting M = 0 (⇒ m(a) = 0) leads to
universal long-distance physics, irrespective of the overlap kernel.

Just as different gauge actions give a Symanzik effective action that

differs by a2× irrelevant dim-6 operators, so two different m = 0
theories will differ by irrelevant dim > 4 operators

What about non-perturbative contributions to the running?

The ’t Hooft vertex!
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’t Hooft vertex contributions
In one flavor QCD, the ’t Hooft vertex is bilinear, and leads to additive
shift of quark mass

Instanton calculations are not reliable when instantons are large, since
g(ρ) is not small

However, what is needed for the RG evolution between scale 1/a and

1/(a+ da) are instantons of size ρ ∼ a

If a is small enough, the semi-classical result should be reliable:

dm

d ln a
≈ mγ0g

2 + const × (1/a)e−8π2/g2

gn

≈ mγ0g
2 + const × Λ(aΛ)28/3

[Georgi & Macarthy 1981] [Choi, Kim, Sze, PRL 61, 794 (1988)]

[Banks, Nir & Seiberg, hep-ph/9403203]

Additive contribution present, which can only calculate approximately

However, it vanishes as a∼9
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Ambiguity or not?
dm

d ln a
≈ mγ0g

2 + const × Λ(aΛ)28/3

There is an uncertainty in the running of m

At a given a, for

|m(a)| ∼
> mcr ≈

(aΛ)28/3Λ

g(a)2γ0

the RG evolution to smaller a will be essentially unaffected by the
additive term, and thus unambiguous

For |m(a)| ∼
< mcr evolution to smaller a is not controlled

In this sense there is an ambiguity in m(a) of size mcr

As a→ 0, however, this ambiguity shrinks rapidly to zero, much faster
than the standard logarithmic decrease of m(a)

Thus, in the standard view, we do know, in a regularization invariant way,
what m = 0 means in the continuum limit

In particular, we can simply take a→ 0 holding m(a) = 0
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More on the Ambiguity
[Creutz, PRL 92, 162003 (2004)] finds this argument unconvincing

The argument certainly relies on the assumption that we know the form of
the non-perturbative terms at short distances

Note that the value of m(a) for the massless theory at a ≈ Λ−1
QCD

(the “constituent quark mass”) is unknown, since the additive term
certainly dominates by this scale

But this is irrelevant for m(a) as a→ 0

Creutz makes some qualitative arguments, but does not directly address
the standard argument given above

Please read and draw your own conclusions

It would be very interesting to test Creutz’s proposed breakdown in
universality numerically (e.g. in 2-d?)
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Relation to PQQCD
PQ extensions of QCD-like theories provide a way of using symmetries to
unambiguously define “mu = 0” [Farchioni et al., 0706.1131,0710.4454]

Consider the PQ Nf = 1 theory, with NV valence quarks (and

corresponding ghosts) degenerate with the sea quark

Enlarged theory now has an approximate chiral symmetry
SU(NV + 1|NV )L × SU(NV + 1|NV )R

This symmetry becomes exact when m→ 0

The fact that 〈ψ̄ψ〉 6= 0 in Nf = 1 QCD implies that the chiral
symmetry of the PQ extension is spontaneously broken

One can thus write down the corresponding PQχPT, and m = 0 at
quark level unambiguously maps to m = 0 at the chiral level in order
to match the symmetries

There are thus PG bosons and fermions with m2
π ∝ m

Thus m = 0 is unambiguously selected by vanishing PQ pion mass,
just as mu = md = 0 is picked out by vanishing physical pion mass
(both requiring L→ ∞)

Used in practice by [Farchioni, 0710.4454]
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More on Relation to PQQCD
Other (closely related ) ways of picking out m = 0

Vanishing of topological susceptibility, which is defined using PQ
correlators [Giusti et al, hep-lat/0402027; Lüscher,

hep-lat/0404034]

1/m divergences in certain finite volume PQ correlation functions

[Bernard et al, 0711.0696]

CONCLUSION: If m = 0 is ambiguous, then the PQ extension of
Nf = 1 QCD does not have a universal continuum limit

For m = 0 the PQ pions are massless but mη, etc. are regularization
dependent

Same argument would apply to other Nf if one of the quark masses
vanishes

These results seem to me to imply that, if m = 0 is ambiguous, PQQCD
is ill-defined in general (even when m 6= 0), and thus that extrapolations
using PQχPT are invalid!
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Relation to rooting issue
Rooted staggered fermions, if they are in the correct universality class,
give PQQCD in the continuumt limit

E.g. for Nf = 1, end up with 4 valence and 1 sea quark

If PQ theories are ill-defined, so is this continuum limit!
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Summary
PQ theories are potentially a very useful practical tool

They have also been used theoretically, particularly in the ǫ-regime, and to
calculate properties of Dirac eigenvalues (e.g. showing that RMT does

describe the properties of low eigenvalues)

Theoretical basis of PQχPT weaker than usual χPT

The issue of whether “mu = 0” is ambiguous is directly related to the
question of whether PQ theories are well defined, and thus deserves
further investigation

Can the standard arguments that mu = 0 is unambiguous be
strengthened, or numerically tested?
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