Applications of Chiral Perturbation theory to lattice QCD (III)

First part adapted from [hep-lat/0607016], second part new.

Stephen R. Sharpe

University of Washington

Outline of Lecture 3

\square Partial quenching and PQ PPT
What is partial quenching?
Developing PQ χ PT
Results and outlook
$\square m_{u}=0$ and the validity of PQ theories

References for Partial Quenching

- A. Morel, "Chiral logarithms in quenched QCD" J.Phys. (Paris) 48, 111 (1987)
- S. R. Sharpe, "Chiral Logarithms In Quenched m_{π} and f_{π}," Phys. Rev. D 41, 3233 (1990).
- C. W. Bernard and M. F. Golterman, "Chiral perturbation theory for the quenched approximation of QCD," Phys. Rev. D 46, 853 (1992)
- S. R. Sharpe, "Quenched chiral logarithms," Phys. Rev. D 46, 3146 (1992)
- C. W. Bernard and M. F. Golterman, "Partially quenched gauge theories and an application to staggered fermions," Phys. Rev. D 49, 486 (1994)
- P. H. Damgaard, et al "The microscopic spectral density of the QCD Dirac operator," Nucl. Phys. B 547, 305 (1999)
- P. H. Damgaard and K. Splittorff, "Partially quenched chiral perturbation theory and the replica method," Phys. Rev. D 62, 054509 (2000)
- S. R. Sharpe and N. Shoresh, "Physical results from unphysical simulations," Phys. Rev. D 62, 094503 (2000)
- S. R. Sharpe and N. Shoresh, "Partially quenched chiral perturbation theory without Φ_{0}," Phys. Rev. D 64, 114510 (2001)
- S. R. Sharpe and R. S. Van de Water, "Unphysical operators in partially quenched QCD," Phys. Rev. D 69, 054027 (2004)

What is Partially Quenched QCD?

\square Explain with example of pion correlator:

$$
\begin{aligned}
C_{\pi}(\tau) & =-\left\langle\sum_{\vec{x}} \bar{u} \gamma_{5} d(\vec{x}, \tau) \bar{d} \gamma_{5} u(0)\right\rangle \\
& \equiv-\frac{1}{Z} \int D U \prod_{q} D q D \bar{q} e^{-S_{\text {gauge }}-\int_{x} \sum_{q} \bar{q}\left(\not D+m_{q}\right) q} \sum_{\vec{x}} \bar{u} \gamma_{5} d(\vec{x}, \tau) \bar{d} \gamma_{5} u(0) \\
& =\frac{1}{Z} \int D U \prod_{q} \operatorname{det}\left(\not D+m_{q}\right) e^{-S_{\text {gauge }}} \sum_{\vec{x}} \operatorname{tr}\left[\gamma_{5}\left(\frac{1}{\not D+m_{d}}\right)_{x 0} \gamma_{5}\left(\frac{1}{\not D+m_{u}}\right)_{0 x}\right]
\end{aligned}
$$

$$
\propto f_{\pi}^{2} e^{-m_{\pi} \tau}+\exp . \text { suppressed }
$$

\square "sea" quarks in determinant; "valence" in propagators
\square Partial Quenching: $m_{\text {val }} \neq m_{\text {sea }}$-many different $m_{\text {val }}$ for each $m_{\text {sea }}$
\square Numerically cheap-can we make use of this extra information?

PQQCD needs PQ χ PT

\square Use PQQCD as a tool to learn about QCD, not as a model of QCD
\triangleright PQQCD is unphysical, e.g. not unitary
\triangleright Intermediate and external "states" differ, e.g. $\pi_{V} \pi_{V} \rightarrow \pi_{S} \pi_{S} \rightarrow \pi_{V} \pi_{V}$
\square Need PQ χ PT in order to extrapolate to QCD
\Rightarrow must be in the quark-mass regime where χ PT is valid
\downarrow Extends the range over which can match lattice and χ PT
\square Subspace with $m_{\text {val }}=m_{\text {sea }}$ are physical QCD-like theories
\downarrow PQ χ PT must match χ PT on subspace
\triangleright LECs in PQ χ PT include those appearing in $\chi \mathrm{PT}$, plus a few (sometimes none) additional unphysical ones

Historical comment on nomenclature

\square Why called partially quenched? Why not partially unquenched?
\square Bad old days: quenched approximation $m_{\text {sea }} \rightarrow \infty$
$\Rightarrow \operatorname{det}\left(\not D+m_{q}\right) \rightarrow$ constant
\Rightarrow No quark loops
$\Rightarrow Z_{\mathrm{QCD}} \rightarrow Z_{\mathrm{QQCD}}=\int D U e^{-S_{\text {gauge }}}=Z_{\text {gauge }}$
\square Unphysical nature of quenched QCD shows up various ways, e.g. $\langle\bar{\psi} \psi\rangle \rightarrow \infty$ as $m_{\text {val }} \rightarrow 0$
\square Partial quenching is in one sense a less extreme version of quenching, and thus the name
\square If $m_{\text {sea }} \gg \Lambda_{\mathrm{QCD}}$ then PQQCD, like quenched QCD, only qualitatively related to QCD
\square Consider here only the case when $m_{\text {sea }} \ll \Lambda_{\mathrm{QCD}}$ so one can use $\chi \mathbf{P T}$ and relate PQCD to QCD quantitatively

Morel's formulation of (P)QQCD

\square IDEA: commuting spin- $\frac{1}{2}$ fields (ghosts) \widetilde{q} give determinant which cancels that from valence quarks

$$
\begin{aligned}
\int D \bar{q} D q e^{-\bar{q}\left(\not D+m_{q}\right) q} & =\operatorname{det}\left(\not D+m_{q}\right) \\
\int D \widetilde{q}^{\dagger} D \widetilde{q} e^{-\widetilde{q}^{\dagger}\left(\not D+m_{q}\right) \widetilde{q}} & =\frac{1}{\operatorname{det}\left(\not D+m_{q}\right)}
\end{aligned}
$$

\square To formulate PQQCD need three types of "quark"
\triangleright valence quarks $q_{V 1}, q_{V 2}, \ldots q_{V N_{V}}\left(N_{V}=2,3, \ldots\right)$
\triangleright sea quarks $q_{S 1}, q_{S 2}, \ldots q_{S N}(N=2,3)$
\triangleright ghosts $\widetilde{q}_{V 1}, \widetilde{q}_{V 2}, \ldots \widetilde{q}_{V N_{V}}\left(N_{V}=2,3, \ldots\right)$
\square Ghosts are degenerate with corresponding valence quarks

Morel's formulation (cont.)

Partition function reproduces that which is simulated:

$$
\begin{aligned}
& Z_{\mathrm{PQ}}=\int D U e^{-S_{\text {gauge }}} \int \prod_{i=1}^{N_{V}}\left(D \bar{q}_{V i} D q_{V i} D \widetilde{q}_{V i}^{\dagger} D \widetilde{q}_{V i}\right) \prod_{j=1}^{N}\left(D \bar{q}_{S j} D q_{S j}\right) \times \\
& \times \exp \left[-\sum_{i=1}^{N_{V}} \bar{q}_{V i}\left(\not \supset+m_{V i}\right) q_{V i}-\sum_{j=1}^{N} \bar{q}_{S j}\left(\not D+m_{S j}\right) q_{S j}-\sum_{k=1}^{N_{V}} \widetilde{q}_{V k}^{\dagger}\left(\not D+m_{V k}\right) \widetilde{q}_{V k}\right] \\
&=\int D U e^{-S_{\text {gauge }}} \prod_{i=1}^{N_{V}}\left(\frac{\operatorname{det}\left(\not D+m_{V i}\right)}{\operatorname{det}\left(\not D+m_{V i}\right)}\right) \prod_{j=1}^{N} \operatorname{det}\left(\not D+m_{S j}\right) \\
&=\int D U e^{-S_{\text {gauge }}} \prod_{j=1}^{N} \operatorname{det}\left(\not D+m_{S j}\right) \\
&=Z_{\mathrm{QCD}}-\text { like }
\end{aligned}
$$

Compact Notation

\square Collect all fields into $\left(N+2 N_{V}\right)$-dim vectors:

$$
\begin{aligned}
& Q=(\underbrace{q_{V 1}, q_{V 2}, \ldots, q_{V N_{V}}}_{\text {valence }}, \underbrace{q_{S 1}, q_{S 2}, \ldots, q_{S N}}_{\text {sea }}, \underbrace{\widetilde{q}_{V 1}, \widetilde{q}_{V 2}, \ldots, \widetilde{q}_{V N_{V}}}_{\text {ghost }}) \\
& \bar{Q}^{t r}=(\underbrace{\bar{q}_{V 1}, \bar{q}_{V 2}, \ldots, \bar{q}_{V N_{V}}}_{\text {valence }}, \underbrace{\bar{q}_{S 1}, \bar{q}_{S 2}, \ldots, \bar{q}_{S N}}_{\text {sea }}, \widetilde{q}_{V 1}^{\dagger}, \widetilde{q}_{V 2}^{\dagger}, \ldots, \widetilde{q}_{V}^{\dagger} N_{V}) \\
& \mathcal{M}=(\underbrace{m_{V 1}, m_{V 2}, \ldots, m_{V N_{V}}}_{\text {valence }}, \underbrace{m_{S 1}, m_{S 2}, \ldots, m_{S N}}_{\text {sea }}, \underbrace{m_{V 1}, m_{V 2}, \ldots, m_{V} N_{V}}_{\text {ghost=valence }})
\end{aligned}
$$

\square Then can write action and partition function as:

$$
\begin{aligned}
S_{\mathrm{PQ}} & =S_{\text {gauge }}+\bar{Q}(D D+\mathcal{M}) Q \\
Z_{\mathrm{PQ}} & =\int D U D \bar{Q} D Q e^{-S_{\mathrm{PQ}}}
\end{aligned}
$$

Formal representation of PQ correlator

$$
\begin{aligned}
& =Z_{\mathrm{PQ}}^{-1} \int D U \prod_{j=1}^{N} \operatorname{det}\left(\not D+m_{S j}\right) e^{-S_{\text {gauge }}} \\
& \times \sum_{\vec{x}} \operatorname{tr}\left[\gamma_{5}\left(\frac{1}{\not D+m_{V d}}\right)_{x 0} \gamma_{5}\left(\frac{1}{\not D+m_{V u}}\right)_{0 x}\right] \\
& =Z_{\mathrm{PQ}}^{-1} \int D U D \bar{Q} D Q e^{-S_{\mathrm{PQ}}} \sum_{\vec{x}} \bar{u}_{V} \gamma_{5} d_{V}(\vec{x}, \tau) \bar{d}_{V} \gamma_{5} u_{V}(0) \\
& Q=(\underbrace{q_{V 1}, q_{V 2}, \ldots, q_{V N_{V}}}_{\text {valence }}, \underbrace{q_{S 1}, q_{S 2}, \ldots, q_{S N}}_{\text {sea }}, \underbrace{\widetilde{q}_{V 1}, \widetilde{q}_{V 2}, \ldots, \widetilde{q}_{V N_{V}}}_{\text {ghost }})
\end{aligned}
$$

What have we learned about PQQCD?

\square Well defined statistical system describing correlators in Euclidean space
\downarrow Can use to represent individual contractions in complicated processes, e.g. $\pi \pi \rightarrow \pi \pi$
\square Regained unitarity, but at the cost of introducing ghosts
\square Shows the ways the PQ theory is unphysical
\downarrow violates spin-statistics theorem
\triangleright loses causality and positivity in Minkowski space
\downarrow loses reflection positivity in Euclidean space
\square Unphysical nature shows up in various ways:
\downarrow Double poles in correlation functions
\downarrow Correlators involving multi-particle states do not have exponential fall-off in time, and have contributions which diverge in infinite volume \Rightarrow cannot define scattering amplitudes [Lin et al]
\square Can we develop an EFT describing PQQCD including its unphysical nature?

Key property of PQQCD

\square "Anchored" to physical QCD-like theories
\square If $m_{V u}=m_{S j}$ and $m_{V d}=m_{S k}$ then valence correlator is physical:

$$
\begin{aligned}
C_{\pi}^{\mathrm{PQ}}(\tau)= & Z_{\mathrm{PQ}}^{-1} \int D U D \bar{Q} D Q e^{-S_{\mathrm{PQ}}} \sum_{\vec{x}} \bar{u}_{V} \gamma_{5} d_{V}(\vec{x}, \tau) \bar{d}_{V} \gamma_{5} u_{V}(0) \\
= & Z_{\mathrm{PQ}}^{-1} \int D U D \bar{Q} D Q e^{-S_{\mathrm{PQ}}} \sum_{\vec{x}} \bar{q}_{S j} \gamma_{5} q_{S k}(\vec{x}, \tau) \bar{q}_{S k} \gamma_{5} q_{S j}(0) \\
= & Z_{\mathrm{QCD}-\text { like }}^{-1} \int D U \prod_{i=1}^{N} D \bar{q}_{S i} D q_{S i} e^{-S_{\mathrm{QCD}-\mathrm{like}}} \\
& \times \sum_{\vec{x}} \bar{q}_{S j} \gamma_{5} q_{S k}(\vec{x}, \tau) \bar{q}_{S k} \gamma_{5} q_{S j}(0) \\
= & C_{\pi}^{\mathrm{QCD}-\text { like }}(\tau)
\end{aligned}
$$

\square Example of enhanced $(\mathrm{V} \leftrightarrow S)$ symmetry in PQ theory

Outline of Lecture 3

- Partial quenching and PQ χ PT
\searrow What is partial quenching?
\downarrow Developing PQ χ PT
Results and outlook
$\square m_{u}=0$ and the validity of PQ theories

Methods for developing PQ

\square "Supersymmetric" method based on Morel's formulation [Bernard \& Golterman]
\square "Replica" method adjusting loop contributions by adjusting $N_{\text {sea }}$ [Damgaard \& Splittorf]
\triangleright Formalizes "Quark-line" method accounting by hand for quarks in loops [Sharpe]
\square Give same results to date—likely equivalent
\square Use supersymmetric method here (with addition of some quark-line method when considering staggered fermions)

Symmetries of PQQCD

$$
Q=(\underbrace{q_{V 1}, q_{V 2}, \ldots, q_{V N_{V}}}_{\text {valence }}, \underbrace{q_{S 1}, q_{S 2}, \ldots, q_{S N}}_{\text {sea }}, \underbrace{\widetilde{q}_{V 1}, \widetilde{q}_{V 2}, \ldots, \widetilde{q}_{V N_{V}}}_{\text {ghost }})
$$

\square Action of PQQCD looks like QCD

$$
S_{\mathrm{PQQCD}}=S_{\text {gauge }}+\bar{Q}(\not D+\mathcal{M}) Q
$$

\square Naively, when $M \rightarrow 0$ have graded version of QCD chiral symmetry:

$$
Q_{L, R} \longrightarrow U_{L, R} Q_{L, R}, \quad \bar{Q}_{L, R} \longrightarrow \bar{Q}_{L, R} U_{L, R}^{\dagger} \quad U_{L, R} \in S U\left(N_{V}+N \mid N_{V}\right)
$$

- Apparent symmetry is $S U\left(N_{V}+N \mid N_{V}\right)_{L} \times S U\left(N_{V}+N \mid N_{V}\right)_{R} \times U(1)_{V}$
\square In fact, there are subtleties in the ghost sector, but can ignore in perturbative calculations [Sharpe \& Shoresh]

Brief primer on graded Lie groups

$\square U$ is graded: contains both commuting and anticommuting elements:

$$
U=\left(\begin{array}{cc}
A & B \\
\underbrace{C}_{N_{V}+N} & \underbrace{D}_{N_{V}}
\end{array}\right), A, D \text { commuting, } B, C \text { anticommuting }
$$

\square If $U \in U\left(N_{V}+N \mid N_{V}\right)$ (fundamental representation) then

$$
U U^{\dagger}=U^{\dagger} U=1, \quad\left[\text { with }\left(\eta_{1} \eta_{2}\right)^{*} \equiv \eta_{2}^{*} \eta_{1}^{*}\right]
$$

\square Supertrace maintains cyclicity:

$$
\operatorname{str} U \equiv \operatorname{tr} A-\operatorname{tr} D \quad \Rightarrow \quad \operatorname{str}\left(U_{1} U_{2}\right)=\operatorname{str}\left(U_{2} U_{1}\right)
$$For $U \in S U\left(N_{V}+N \mid N_{V}\right)$, superdeterminant is unity:

$\operatorname{sdet} U \equiv \exp [\operatorname{str}(\ln U)]=\frac{\operatorname{det}\left(A-B D^{-1} C\right)}{\operatorname{det}(D)} \Rightarrow \operatorname{sdet}\left(U_{1} U_{2}\right)=\operatorname{sdet} U_{1} \operatorname{sdet} U_{2}$

Examples of $S U\left(N_{V}+N \mid N\right)$ matrices

$$
\begin{aligned}
U=\left(\begin{array}{cc}
S U\left(N_{V}+N\right) & 0 \\
0 & S U\left(N_{V}\right)
\end{array}\right) & \Rightarrow
\end{aligned} \quad \operatorname{sdet} U=1 .
$$

\square An overall phase rotation is not in $S U\left(N_{V}+N \mid N\right)$

$$
U=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{i \theta}
\end{array}\right) \Rightarrow \operatorname{sdet} U=\frac{e^{i \theta\left(N+N_{V}\right)}}{e^{i \theta N_{V}}}=e^{i \theta N}
$$

\square Thus $U\left(N_{V}+N \mid N_{V}\right)=\left[S U\left(N_{V}+N \mid N_{V}\right) \otimes U(1)\right] / Z_{N}$Group structure different if $N=0$ (quenched theory)

Follow same steps as for QCD

- Expand about $\mathcal{M}=0$
\triangleright A posteriori find that must take chiral limit with m_{V} and m_{S} in fixed ratio
\triangleright Divergences if $m_{V} \rightarrow 0$ at fixed m_{S} [Sharpe]
\square Graded chiral symmetry is broken by condensate
\triangleright Have Goldstone bosons and fermions (but both spin 0)
\square Develop low-energy EFT based on symmetries and symmetry breaking
\triangleright Weaker theoretical basis than usual χ PT since underlying theory is unphysical
\triangleright PQХPT matches unphysical features of PQQCD (e.g. double poles)
\square Most LECs in PQXPT are the same as those in χ PT because QCD is a subset of PQQCD
\triangleright Use PQQCD to determine physical parameters of QCD (and/or to improve chiral extrapolations)

Symmetry breaking in PQQCD

\square Symmetry group $(M \rightarrow 0): \mathcal{G}=S U\left(N_{V}+N \mid N_{V}\right)_{L} \times S U\left(N_{V}+N \mid N_{V}\right)_{R}$
\square For \mathcal{M} diagonal, real and positive [Vafa \& Witten] implies graded vector symmetry not spontaneously broken
\triangleright Quark and ghost condensates equal if $m_{V}=m_{S} \rightarrow 0$

$$
\left\langle q_{V} \bar{q}_{V}\right\rangle=\left\langle\tilde{q}_{V} \overline{\tilde{q}}_{V}\right\rangle=\left\langle q_{S} \bar{q}_{S}\right\rangle=\omega
$$Spontaneous chiral symmetry breaking in QCD $\Rightarrow \omega \neq 0$

\Rightarrow We know pattern of symmetry breaking. Introducing order parameter

$$
\Omega_{i j}=\left\langle Q_{L, i, \alpha, c} \bar{Q}_{R, j, \alpha, c}\right\rangle_{\mathrm{PQ}} \underset{\mathcal{G}}{\longrightarrow} U_{L} \Omega U_{R}^{\dagger}
$$

we know $\Omega=\omega \times 1$ with standard masses \Rightarrow vacuum manifold is $S U\left(N_{V}+N \mid N_{V}\right)$
\triangleright Symmetry breaking is $\mathcal{G} \rightarrow \mathcal{H}=S U\left(N_{V}+N \mid N_{V}\right)_{V}$
\square Can derive Goldstone's theorem using Ward identities for two-point Euclidean correlators
$\triangleright\left(N+2 N_{V}\right)^{2}-1$ Goldstone "particles" created by operators $\bar{Q} \gamma_{\mu} \gamma_{5} T^{a} Q$ with T^{a} a traceless generator of $S U\left(N_{V}+N \mid N_{V}\right)$

Moving to EFT

- In QCD, proceed as follows:
\downarrow Having established GB poles in two-point functions, we know that they will also be present in higher-order correlation functions, and in cuts
$\triangleright \chi$ PT reproduces this behavior, while incorporating the chiral Ward identities, and yielding physical S-matrix
\square In PQQCD, situation is worse:
\triangleright Have GB poles in two-point functions
\triangleright Have Ward identities between correlation functions
\downarrow No Hamiltonian so cannot show that same poles appear in higher-order correlation functions, or in cuts (no complete sets of states)
\downarrow In fact, can show that there are double poles (but no higher) in neutral correlators [Sharpe \& Shoresh]
- Cannot rely on Weinberg's argument to determine EFT since no S-matrix
\triangleright Only "anchor" is fact that know EFT for QCD-like subspace
\square For PQQCD must simply assume minimal change from QCD: assume that have local $\mathcal{L}_{\text {eff }}$, constrained by symmetries
\triangleright Saturates Ward identities and reproduces double poles

Constructing $\mathcal{L}_{\mathrm{PQ}}$: choice of Σ

\square Follow method used for QCD:

$$
\Omega / \omega \rightarrow \Sigma(x) \in S U\left(N_{V}+N \mid N\right), \quad \Sigma \underset{\mathcal{G}}{\longrightarrow} U_{L} \Sigma U_{R}^{\dagger}
$$

\square For standard masses, $\langle\Sigma\rangle=1$, so define Goldstones by

$$
\Sigma=\exp \left[\frac{2 i}{f} \Phi(x)\right], \quad \Phi(x)=\left(\begin{array}{cc}
\phi(x) & \eta_{1}(x) \\
\eta_{2}(x) & \widetilde{\phi}(x)
\end{array}\right)
$$

$$
\triangleright \operatorname{sdet} \Sigma=1 \Rightarrow \operatorname{str} \Phi=\operatorname{tr} \phi-\operatorname{tr} \widetilde{\phi}=0
$$

\square QCD GBs contained in Φ

$$
\Phi(x)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \pi(x) & 0 \\
\underbrace{}_{N_{V}} & \underbrace{0}_{N} & \underbrace{0}_{N_{V}}
\end{array}\right) \Rightarrow \Sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \Sigma_{\mathrm{QCD}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

\square Building blocks for PQ χ PT as for χ PT, e.g.

$$
L_{\mu}=\Sigma D_{\mu} \Sigma^{\dagger} \rightarrow U_{L} L_{\mu} U_{L}^{\dagger}, \quad \operatorname{str}\left(L_{\mu}\right)=0
$$

ㅁ
Power counting as in $\chi \mathrm{PT}$

PQ chiral Lagrangian [Berard \& Golterman]

$$
\begin{aligned}
\mathcal{L}^{(2)}= & \frac{f^{2}}{4} \operatorname{str}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)-\frac{f^{2}}{4} \operatorname{str}\left(\chi \Sigma^{\dagger}+\Sigma \chi^{\dagger}\right) \\
\mathcal{L}^{(4)}= & -L_{1} \operatorname{str}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)^{2}-L_{2} \operatorname{str}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \operatorname{tr}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \\
& +L_{3} \operatorname{str}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger} D_{\nu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \\
& \left.+L_{4} \operatorname{str}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right) \operatorname{str}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right)+L_{5} \operatorname{str}\left(D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma\right)\left[\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right]\right) \\
& -L_{6}\left[\operatorname{str}\left(\chi^{\dagger} \Sigma+\Sigma^{\dagger} \chi\right)\right]^{2}-L_{7}\left[\operatorname{str}\left(\chi^{\dagger} \Sigma-\Sigma^{\dagger} \chi\right)\right]^{2}-L_{8} \operatorname{str}\left(\chi^{\dagger} \Sigma \chi^{\dagger} \Sigma+\text { p.c. }\right) \\
& +L_{9} i \operatorname{str}\left(L_{\mu \nu} D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}+\text { p.c. }\right)+L_{10} \operatorname{str}\left(L_{\mu \nu} \Sigma R_{\mu \nu} \Sigma^{\dagger}\right) \\
& +H_{1} \operatorname{str}\left(L_{\mu \nu} L_{\mu \nu}+\text { p.c. }\right)+H_{2} \operatorname{str}\left(\chi^{\dagger} \chi\right)+\mathrm{WZW}_{\mathrm{PQ}} \\
& +L_{\mathrm{PQ}} \mathcal{O}_{P Q} \\
\square \quad \chi= & 2 B_{0} \mathcal{M} \\
\square & \text { Same form as for QCD with tr } \rightarrow \text { str plus one extra term }\left(\mathcal{O}_{\mathrm{PQ}}\right) \\
\square & \text { How do the LECs related to those of QCD? }
\end{aligned}
$$

Relating PQХPT to χ PT

\square If choose Σ to lie in QCD subspace

$$
\Sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \Sigma_{\mathrm{QCD}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and sources do not connect subspaces, then

$$
\mathcal{L}_{\mathrm{PQ} \chi \mathrm{PT}}^{(2,4, \ldots)}(\Sigma) \rightarrow \mathcal{L}_{\chi \mathrm{PT}}^{(2,4, \ldots)}\left(\Sigma_{\mathrm{QCD}}\right)
$$

\square If external fields in correlation function are from sea sector, then can show that all valence and ghost contributions cancel in intermediate states
$\Rightarrow \quad \Sigma$ takes the form given above
$\triangleright \mathrm{PQ} \chi \mathrm{PT}$ calculation collapses to one in $\chi \mathrm{PT}$
\square Thus LECs in PQ χ PT are equal to those in χ PT
\triangleright Results in the chiral regime from PQQCD give information about physical LECs

What about $\mathcal{O}_{\mathrm{PQ}}$?

\square Starting at NLO, at each order there are an increasing number of PQ operators that vanish on QCD subspace
\square At NLO, only one such operator [Sharpe \& Van de Water]

$$
\begin{aligned}
\mathcal{O}_{\mathrm{PQ}}= & \operatorname{str}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger} D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \\
& -\frac{1}{2} \operatorname{str}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)^{2}-\operatorname{str}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \operatorname{str}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right) \\
& +2 \operatorname{str}\left(D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger} D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}\right)
\end{aligned}
$$

\square Vanishes if $\Sigma \rightarrow \Sigma_{\mathrm{QCD}}$ due to Cayley-Hamilton relations for 3×3 matrices
\square Does not vanish for general Σ_{PQ}
\square Appears in $\mathcal{L}_{\mathrm{PQ} \chi}^{(4)}$ with additional LEC
\square Same is true for standard χ PT if $N \geq 4$
$\square \mathcal{O}_{\mathrm{PQ}}$ contributes to $\pi \pi$ scattering at NLO, but to m_{π} and f_{π} only at NNLO

Why is $\mathcal{O}_{\mathrm{PQ}}$ present?

\square Because PQQCD allows isolation of individual Wick contractions, unlike QCD
\square For example, $\pi^{+} K^{0}$ scattering in QCD has two contractions

\square Can separate these contractions in PQQCD, e.g.

$\square \mathcal{O}_{\mathrm{PQ}}$ contributes to the PQQCD process, but not that in QCD
\square Shows how PQQCD differs from QCD even if $m_{V}=m_{S}$

Calculating in PQ P PT

$\square \mathrm{PQ}$ Lagrangian at LO:

$$
\mathcal{L}^{(2)}=\frac{f^{2}}{4} \operatorname{str}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)-\frac{f^{2}}{4} \operatorname{str}\left(\chi \Sigma^{\dagger}+\Sigma \chi^{\dagger}\right)
$$

\square Insert expansion in Goldstone fields:

$$
\begin{aligned}
\Sigma= & \exp \left[\frac{2 i}{f} \Phi(x)\right], \quad \Phi(x)=\left(\begin{array}{cc}
\phi(x) & \eta_{1}(x) \\
\eta_{2}(x) & \widetilde{\phi}(x)
\end{array}\right), \quad \operatorname{str} \Phi=0 \\
\mathcal{L}^{(2)}= & \operatorname{str}\left(\partial_{\mu} \Phi \partial_{\mu} \Phi\right)+\operatorname{str}\left(\chi \Phi^{2}\right)+\ldots \\
= & \operatorname{tr}\left(\partial_{\mu} \phi \partial_{\mu} \phi+\partial_{\mu} \eta_{1} \partial_{\mu} \eta_{2}-\partial_{\mu} \eta_{2} \partial_{\mu} \eta_{1}-\partial_{\mu} \widetilde{\phi} \partial_{\mu} \widetilde{\phi}\right) \\
& +\operatorname{tr}\left[\left(\phi^{2}+\eta_{1} \eta_{2}\right)\left(\begin{array}{cc}
m_{V} & 0 \\
0 & m_{S}
\end{array}\right)\right]-\operatorname{tr}\left(\widetilde{\phi}^{2} m_{V}\right)-\operatorname{tr}\left(\eta_{2} \eta_{1} m_{V}\right)
\end{aligned}
$$

$\square \phi$ part is like in QCD, except includes both valence and sea quarks
\triangleright Propagator for "charged" meson $\bar{q}_{1} q_{2}$ (either valence of sea) is $1 /\left(p^{2}+m_{12}^{2}\right), m_{12}^{2}=\left(\chi_{1}+\chi_{2}\right) / 2$

LO calculation (cont.)

$$
\begin{aligned}
\mathcal{L}^{(2)}= & \operatorname{tr}\left(\partial_{\mu} \phi \partial_{\mu} \phi+\partial_{\mu} \eta_{1} \partial_{\mu} \eta_{2}-\partial_{\mu} \eta_{2} \partial_{\mu} \eta_{1}-\partial_{\mu} \widetilde{\phi} \partial_{\mu} \widetilde{\phi}\right) \\
& +\operatorname{tr}\left[\left(\phi^{2}+\eta_{1} \eta_{2}\right)\left(\begin{array}{cc}
m_{V} & 0 \\
0 & m_{S}
\end{array}\right)\right]-\operatorname{tr}\left(\widetilde{\phi}^{2} m_{V}\right)-\operatorname{tr}\left(\eta_{2} \eta_{1} m_{V}\right)
\end{aligned}
$$

$\square \widetilde{\phi}$ terms have wrong signs
\triangleright Naively, propagator for "charged" ghost mesons $\overline{\widetilde{q}}_{1} \widetilde{q}_{2}$ is $-1 /\left(p^{2}+m_{12}^{2}\right)$, $m_{12}^{2}=\left(\chi_{1}+\chi_{2}\right) / 2$
\triangleright But potential not minimized and functional integral not convergent!
\downarrow More careful treatment of symmetries of PQQCD, maintaining convergence of ghost functional integral, concludes that naive result is OK in perturbation theory (but not non-perturbatively, e.g. in ϵ-regime, where should change $\widetilde{\phi} \rightarrow i \widetilde{\phi}, \Sigma^{\dagger} \rightarrow \Sigma^{-1}$) [Sharpe \& Shoresh]
\square Goldstone fermion propagators can have either sign (no convergence problems); actual signs important for cancellations

What about Φ_{0} ?

\square How implement $\operatorname{str}(\Phi)=\operatorname{tr}(\phi)-\operatorname{tr}(\widetilde{\phi})=0$?

1. Use a basis of generators which is straceless:

$$
\Phi=\sum_{a} \Phi_{a} T^{a} \text { with } \operatorname{str}\left(T^{a}\right)=0
$$

\triangleright Analagous to not including the η^{\prime} in QCD χ PT
\triangleright Clumsy in practice and not used
2. Include identity component but then "integrate out"

$$
\begin{aligned}
& \Phi \rightarrow \Phi+\Phi_{0} / \sqrt{N} \text { so that } \operatorname{str} \Phi=\sqrt{N} \Phi_{0} \\
& \mathcal{L}_{\mathrm{PQ} \chi} \rightarrow \mathcal{L}_{\mathrm{PQ} \chi}+m_{0}^{2} \operatorname{str}(\Phi)^{2} / N
\end{aligned}
$$

\triangleright Calculate propagators, then send $m_{0}^{2} \rightarrow \infty$ within them
\downarrow To make formally correct, must regularize with a cut-off (e.g. lattice) so that $\left(\partial_{\mu} \Phi_{0}\right)^{2}<m_{0}^{2} \Phi_{0}^{2}$ (trivial decoupling)
\geqslant Really just a trick to implement stracelessness
\downarrow Method used in practice
\square Introducing Φ_{0} has advantage of allowing use of "quark line" basis: $\Phi_{i j} \sim Q_{i} \bar{Q}_{j}$ for all i, j

Quark lines and double poles

\square "Charged" particle propagators are simple:

$$
\left\langle\Phi_{i j} \Phi_{j i}\right\rangle= \pm \frac{1}{p^{2}+\left(\chi_{i}+\chi_{j}\right) / 2}=
$$

\square Neutral propagators have double poles:

$$
\begin{aligned}
\mathcal{L}^{(2)} & =\sum_{j=1}^{N+2 N_{V}} \epsilon_{j}\left(\partial_{\mu} \Phi_{j j} \partial_{\mu} \Phi_{j j}+m_{j} \Phi_{j j}^{2}\right)+\left(m_{0}^{2} / N\right)\left(\sum_{j} \epsilon_{j} \Phi_{j j}\right)^{2} \\
\epsilon_{j} & = \begin{cases}+1 & \text { valence or sea quarks } \\
-1 & \text { ghosts }\end{cases}
\end{aligned}
$$

\square Can simply invert with linear algebra tricks. Schematically, for external valence quarks have "hairpin" sum:

$$
\underline{\mathrm{V}}+\stackrel{\mathrm{V} \mathrm{~V}}{\Longrightarrow}+\underset{\sim}{\leftrightarrows}+\ldots
$$

Neutral propagator

\square Result after $m_{0}^{2} \rightarrow \infty$ for $N=3$ [Bernard \& Golterman; Sharpe \& Shoresh]

$$
\left\langle\Phi_{i i} \Phi_{j j}\right\rangle=\frac{\epsilon_{i} \delta_{i j}}{p^{2}+\chi_{i}}-\frac{1}{N} \frac{1}{\left(p^{2}+\chi_{i}\right)\left(p^{2}+\chi_{j}\right)} \frac{\left(p^{2}+\chi_{S 1}\right)\left(p^{2}+\chi_{S 2}\right)\left(p^{2}+\chi_{S 3}\right)}{\left(p^{2}+M_{\pi_{0}}^{2}\right)\left(p^{2}+M_{\eta}^{2}\right)}
$$

\square Simplifies for degenerate sea quarks:

$$
\left\langle\Phi_{i i} \Phi_{j j}\right\rangle=\frac{\epsilon_{i} \delta_{i j}}{p^{2}+\chi_{i}}-\frac{1}{N} \frac{\left(p^{2}+\chi_{S}\right)}{\left(p^{2}+\chi_{i}\right)\left(p^{2}+\chi_{j}\right)}
$$

\triangleright Manifestly unphysical double pole for $\chi_{i}=\chi_{j}$
\triangleright Residue is then $\left(\chi_{i}-\chi_{S}\right) / N$, so vanishes for physical subspace
\triangleright Can show from symmetries of $P Q Q C D$ that if charged propagators have single poles, then neutral have double (and no higher) poles [Sharpe \& Shoresh]
\square Propagator becomes physical if i, j are sea quarks, e.g. for degenerate sea

$$
\left\langle\Phi_{S S} \Phi_{S S}\right\rangle=\frac{1}{p^{2}+\chi_{S}}\left(1-\frac{1}{N}\right)
$$

\downarrow Recover projection against η^{\prime}

Outline of Lecture 3

- Partial quenching and PQ χ PT
\downarrow What is partial quenching?
® Developing PQХPT
Results and outlook
$\square m_{u}=0$ and the validity of PQ theories

Sample calculation: m_{π}^{2}

\square Calculations are straightforward extension of standard χ PT
\square Mass-squared of "pion" composed of valence quarks $V 1, V 2$
\square Quark-line diagrams for 1-loop contributions

\triangleright LO four-pion vertices have single strace, so are "connected"
\downarrow Manifest cancellation between contributions from commuting and anticommuting particles

NLO result for m_{π}^{2}

\square To simplify expression for loop contributions, assume N degenerate sea quarks and $m_{V 1}=m_{V 2} \neq m_{S}$

$$
\begin{aligned}
m_{V V}^{2}= & \chi_{V}\left(1+\frac{1}{N} \frac{2 \chi_{V}-\chi_{S}}{\Lambda_{\chi}^{2}} \ln \left(\chi_{V} / \mu^{2}\right)+\frac{\chi_{V}-\chi_{S}}{N \Lambda_{\chi}^{2}}\right. \\
& \left.+\frac{8}{f^{2}}\left[\left(2 L_{8}-L_{5}\right) \chi_{V}+\left(2 L_{6}-L_{4}\right) N \chi_{S}\right]\right)
\end{aligned}
$$

\downarrow Reduces to QCD-like result when $\chi_{V} \rightarrow \chi_{S}$
$\triangleright \chi_{V}$ and χ_{S} provide separate dials for determining $2 L_{8}-L_{5}$ and $2 L_{6}-L_{4}$
\downarrow Result in PQ mass-plane depends on physical LECs
\triangleright Unphysical nature of result clear from divergence in $\chi_{S} \ln \chi_{V}$ as $\chi_{V} \rightarrow 0$
\downarrow In practice, expansion breaks down only for very small χ_{V}
\square Has been used to determine $2 L_{8}-L_{5}$ which, using continuum $\chi \mathrm{PT}$, constrains physical m_{u}

Status of PQXPT calculations

\square It is now standard to extend any χ PT calculation to PQ χ PT
\triangleright Many quantities considered at NLO: pions, baryons, vector mesons, scalar mesons, heavy-light hadrons, weak matrix elements (B_{K}, $K \rightarrow \pi \pi$), NEDM, pion scattering, ...
\triangleright First calculations at NNLO for pion properties
$\triangleright \mathrm{PQ}$ effects also included in tm $\chi \mathrm{PT}$, staggered $\chi \mathrm{PT}$ and mixed action χ PT
\triangleright Most non-trivial example is baryons, where need to use a set-up in which all three quark lines are explicit
\triangleright Most striking result is for scalar meson correlators, where hairpin propagators lead to unphysical negative contributions at long distances
\square In general, can use PQ χ PT to determine form of expected results for individual contractions (e.g. connected and disconnected contributions to π_{0} propagators in tmLQCD)
\square Most extensive practical use is in MILC improved staggered simulations
\square Potentially a powerful practical tool, but important to test given incomplete theoretical justification

A final fun example: L_{7}

$$
\mathcal{L}_{\chi}^{(4)}=\cdots-L_{7} \operatorname{str}\left(\chi \Sigma^{\dagger}-\Sigma \chi^{\dagger}\right)^{2}+\ldots
$$

\square Contributes to PGB masses only for non-degenerate quarks
\square In QCD, only significant contribution is to m_{η}

$$
4 m_{K}^{2}-m_{\pi}^{2}-3 m_{\eta}^{2}=\frac{32\left(m_{K}^{2}-m_{\pi}^{2}\right)^{2}}{3 f^{2}}\left(L_{5}-6 L_{8}-12 L_{7}\right)+\text { chiral logs }
$$

\square Direct lattice calculation of m_{η} possible but challenging
\square Can we determine L_{7} and thus m_{η} indirectly using PQQCD?
\square Yes, from residue of PQ double pole [Sharpe \& Shoresh]

$$
\left.\frac{\int d^{3} x\left\langle\Phi_{V 1, V 1}(t, \vec{x}) \Phi_{V 2, V 2}(0)\right\rangle}{\int d^{3} x\left\langle\Phi_{V 1, V 2}(t, \vec{x}) \Phi_{V 2, V 1}(0)\right\rangle}\right|_{m_{V 1}=m_{V 2}} t \rightarrow \infty \frac{\mathcal{D} t}{2 M_{V V}}
$$

\square With $N=3$ degenerate sea quarks find:

$$
\mathcal{D}=\frac{\chi_{V}-\chi_{S}}{N}-\frac{16}{f^{2}}\left(L_{7}+\frac{L_{5}}{2 N}\right)\left(\chi_{V}-\chi_{S}\right)^{2}+\text { known chiral logs }
$$

$\square \mathrm{PQ}$ simulations allow use of multiple $\chi_{V} \Rightarrow$ better signal?

Outline of Lecture 3

\square Partial quenching and PQХPT

$\square m_{u}=0$ and the validity of PQ theories

Meaning of "Ambiguity in $m_{u}=0$ "

\square Consider QCD with m_{d} and m_{s} fixed (e.g. at their physical values), but send $m_{u} \rightarrow 0$
\triangleright No increase in symmetry
$\triangleright m_{\pi}^{2} \propto\left(m_{u}+m_{d}\right)+$ NLO does not vanish
\square Contrast this with sending both $m_{u}, m_{d} \rightarrow 0$:
$\triangleright S U(2)_{L} \times S U(2)_{R}$ becomes exact, and $m_{\pi}^{2} \rightarrow 0$
\square But doesn't $m_{u} \rightarrow 0$ have unambiguous meaning at the level of the lattice action?
\triangleright Naively would seem so if use fermions with exact chiral symmetry (e.g. overlap)
\triangleright But there are (infinitely) many choices for overlap kernel, which assign different topological charges to "rough" configurations
\square If we set $m_{u}=0$ using two different kernels, will we obtain, in the continuum limit, the same value for mass ratios, e.g. $m_{\pi_{0}} / m_{\text {proton }}$?
\triangleright The standard answer is YES
\triangleright [Creutz, PRL 92, 162003 (2004)] argues NO!This is the potential ambiguity.

Restate issue in $N_{f}=1$ theory

\square Can formulate the issue also in $N_{f}=1$ QCD, a simpler setting
\square No PGBs: spectrum consists of " η ", " Δ ", etc.
\square With two overlap operators having different kernels, if one sets $m=0$, and takes the continuum limit (not an easy task in practice!) will one get the same value for m_{η} / m_{Δ} ?
\downarrow The standard answer is YES
\triangleright [Creutz, PRL 92, 162003 (2004)] argues NO
\triangleright Note that for $a \neq 0$ will certainly have "kernel-dependent" discretization errors-the issue is what happens when $a \rightarrow 0$.
\square Use this formulation in subsequent discussion:
\triangleright Note that $\langle\bar{\psi} \psi\rangle \neq 0$, although this breaks no symmetry

Standard argument—part I

\square In perturbation theory, if have chiral symmetry (as with overlap), quark mass is renormalized multiplicatively, to all orders in PT:

$$
\begin{aligned}
m(a) & =M g(a)^{\gamma_{0} / \beta_{0}}\left[1+O\left(g^{2}\right)\right] \\
a \Lambda & =e^{-1 /\left(2 \beta_{0} g^{2}\right)} g^{-\beta_{1} / \beta_{0}^{2}}\left[1+O\left(g^{2}\right)\right] \\
\beta_{0} & =\left(11-2 N_{f} / 3\right) /\left(16 \pi^{2}\right)
\end{aligned}
$$

\square This is uncontroversial. If it were the whole story, it would imply that, once $g(a)$ is small enough (so the universal parts of the β-function and anomalous dimension dominate) setting $M=0(\Rightarrow m(a)=0)$ leads to universal long-distance physics, irrespective of the overlap kernel.
\downarrow Just as different gauge actions give a Symanzik effective action that differs by $a^{2} \times$ irrelevant dim- 6 operators, so two different $m=0$ theories will differ by irrelevant $\operatorname{dim}>4$ operators
\square What about non-perturbative contributions to the running?
\triangleright The 't Hooft vertex!

't Hooft vertex contributions

\square In one flavor QCD, the 't Hooft vertex is bilinear, and leads to additive shift of quark mass
\square Instanton calculations are not reliable when instantons are large, since $g(\rho)$ is not small
\square However, what is needed for the RG evolution between scale $1 / a$ and $1 /(a+d a)$ are instantons of size $\rho \sim a$
\square If a is small enough, the semi-classical result should be reliable:

$$
\begin{aligned}
\frac{d m}{d \ln a} & \approx m \gamma_{0} g^{2}+\mathrm{const} \times(1 / a) e^{-8 \pi^{2} / g^{2}} g^{n} \\
& \approx m \gamma_{0} g^{2}+\mathrm{const} \times \Lambda(a \Lambda)^{28 / 3}
\end{aligned}
$$

[Georgi \& Macarthy 1981] [Choi, Kim, Sze, PRL 61, 794 (1988)] [Banks, Nir \& Seiberg, hep-ph/9403203]
\square Additive contribution present, which can only calculate approximately
\triangleright However, it vanishes as $a^{\sim 9}$

Ambiguity or not?

$$
\frac{d m}{d \ln a} \approx m \gamma_{0} g^{2}+\text { const } \times \Lambda(a \Lambda)^{28 / 3}
$$

\square There is an uncertainty in the running of m
\triangleright At a given a, for

$$
|m(a)| \gtrsim m_{c r} \approx \frac{(a \Lambda)^{28 / 3} \Lambda}{g(a)^{2} \gamma_{0}}
$$

the RG evolution to smaller a will be essentially unaffected by the additive term, and thus unambiguous
\triangleright For $|m(a)| \lesssim m_{c r}$ evolution to smaller a is not controlled
\triangleright In this sense there is an ambiguity in $m(a)$ of size $m_{c r}$
\square As $a \rightarrow 0$, however, this ambiguity shrinks rapidly to zero, much faster than the standard logarithmic decrease of $m(a)$
\square Thus, in the standard view, we do know, in a regularization invariant way, what $m=0$ means in the continuum limit
\triangleright In particular, we can simply take $a \rightarrow 0$ holding $m(a)=0$

More on the Ambiguity

$\square \quad$ [Creutz, PRL 92, 162003 (2004)] finds this argument unconvincing
\square The argument certainly relies on the assumption that we know the form of the non-perturbative terms at short distances
\triangleright Note that the value of $m(a)$ for the massless theory at $a \approx \Lambda_{\mathrm{QCD}}^{-1}$ (the "constituent quark mass") is unknown, since the additive term certainly dominates by this scale
\downarrow But this is irrelevant for $m(a)$ as $a \rightarrow 0$
\square Creutz makes some qualitative arguments, but does not directly address the standard argument given above
\downarrow Please read and draw your own conclusions
\square It would be very interesting to test Creutz's proposed breakdown in universality numerically (e.g. in 2-d?)

Relation to PQQCD

$\square \mathrm{PQ}$ extensions of QCD-like theories provide a way of using symmetries to unambiguously define " $m_{u}=0$ " [Farchioni et al., 0706.1131,0710.4454]
\square Consider the PQ $N_{f}=1$ theory, with N_{V} valence quarks (and corresponding ghosts) degenerate with the sea quark
\downarrow Enlarged theory now has an approximate chiral symmetry $S U\left(N_{V}+1 \mid N_{V}\right)_{L} \times S U\left(N_{V}+1 \mid N_{V}\right)_{R}$
\triangleright This symmetry becomes exact when $m \rightarrow 0$
\triangleright The fact that $\langle\bar{\psi} \psi\rangle \neq 0$ in $N_{f}=1$ QCD implies that the chiral symmetry of the PQ extension is spontaneously broken
\downarrow One can thus write down the corresponding PQХPT, and $m=0$ at quark level unambiguously maps to $m=0$ at the chiral level in order to match the symmetries
\triangleright There are thus PG bosons and fermions with $m_{\pi}^{2} \propto m$
\triangleright Thus $m=0$ is unambiguously selected by vanishing PQ pion mass, just as $m_{u}=m_{d}=0$ is picked out by vanishing physical pion mass (both requiring $L \rightarrow \infty$)
\triangleright Used in practice by [Farchioni, 0710.4454]

More on Relation to PQQCD

\square Other (closely related) ways of picking out $m=0$
\downarrow Vanishing of topological susceptibility, which is defined using PQ correlators [Giusti et al, hep-lat/0402027; Lüscher, hep-lat/0404034]
$\triangleright 1 / m$ divergences in certain finite volume PQ correlation functions [Bernard et al, 0711.0696]
\square CONCLUSION: If $m=0$ is ambiguous, then the PQ extension of $N_{f}=1$ QCD does not have a universal continuum limit
\triangleright For $m=0$ the PQ pions are massless but m_{η}, etc. are regularization dependent
\square Same argument would apply to other N_{f} if one of the quark masses vanishes
\square These results seem to me to imply that, if $m=0$ is ambiguous, PQQCD is ill-defined in general (even when $m \neq 0$), and thus that extrapolations using PQ χ PT are invalid!

Relation to rooting issue

\square Rooted staggered fermions, if they are in the correct universality class, give PQQCD in the continuumt limit
\triangleright E.g. for $N_{f}=1$, end up with 4 valence and 1 sea quark
\square If $P Q$ theories are ill-defined, so is this continuum limit!

Summary

$\square \mathrm{PQ}$ theories are potentially a very useful practical tool
\square They have also been used theoretically, particularly in the ϵ-regime, and to calculate properties of Dirac eigenvalues (e.g. showing that RMT does describe the properties of low eigenvalues)
\square Theoretical basis of PQ χ PT weaker than usual χ PT
\square The issue of whether " $m_{u}=0$ " is ambiguous is directly related to the question of whether PQ theories are well defined, and thus deserves further investigation
\triangleright Can the standard arguments that $m_{u}=0$ is unambiguous be strengthened, or numerically tested?

