Non-perturbative HQET at the 1/m order

N. Garron

Instituto de Física Teórica Universidad Autónoma de Madrid

with B. Blossier, M. Della Morte, R. Sommer P. Fritzsch, J. Heitger H. Meyer, M. Papinutto T. Mendes, G. von Hippel

- Quark masses are very different in the standard model (from a few MeV to 200 GeV)
- Precise determinations of F_B and F_{B_s} are needed to constraint the free parameters of the SM.
- *m*_b free parameter
- In a heavy-light system it is very challenging to simulate a b-quark directly from the QCD Lagrangian.
- One can use an effective theory HQET is a natural choice for a B meson
- Computation of the 1/m corrections to have a better handle on the approximation

Heavy-light meson on the lattice

Heavy-light meson contains both light and heavy degrees of freedom $m_s \sim 100 \text{ MeV}$ and $m_b \sim 4 \text{ GeV}$ \Rightarrow need a large volume and a small lattice spacing

- Bare heavy quark mass $am_b \ll 1$, eg $am_b = 0.1$ ⇒ For a O(a)-improved action, leading discr error $O(am_b)^2 \sim 1\%$
- Spatial extent L = aN. For instance impose L > 2 fm \Rightarrow Requires a large number of points

$$N > rac{2 ext{ fm}}{a} = (2 ext{ fm}) imes (10 m_{ ext{b}}) = 80 ext{ GeV fm} \sim 400$$

Not doable with nowadays computers \Rightarrow Effective theory

Effective theories for heavy quark

Momentum of a heavy quark (inside a hadron) $p = m_Q v + k$ Interaction with light dof $k \sim \Lambda_{\rm QCD} \ll m_Q$ Separate the higher and lower components of the heavy quark, and find an effective lagrangian

$$\mathcal{L}_{\rm eff} = \bar{\psi}_{\rm h}(x) \left[iv.D + \frac{(iD_{\perp})^2}{2m_Q} + \frac{g\sigma.G}{4m_Q} + \dots \right] \psi_{\rm h}(x)$$

Different choices:

- Expansion in $\Lambda_{\rm QCD}/m_Q$: HQET
- Expansion in v and $1/am_Q$: NRQCD
- Fermilab Method

Alternative "relativistic heavy quarks" [Aoki et al '01, Christ et al, Lin et al '06]

HQET on the lattice

Action of the effective theory on a lattice [Eichten & Hill]

$$S_{\mathrm{HQET}} = a^{4} \sum_{x} \{ \overline{\psi}_{\mathrm{h}}(x) [D_{0} + \delta m] \psi_{\mathrm{h}}(x) + \sum_{\nu=1}^{n} \mathcal{L}^{(\nu)}(x) \}$$

with

$$\mathcal{L}^{(\nu)}(x) = \sum_{i} \omega_i^{(\nu)} \mathcal{L}_i^{(\nu)}(x) \qquad \qquad \omega_i^{(\nu)} \propto (1/m)^{\nu}$$

At the 1/m order

Green functions

Under the path integral: expand in $1/m \Rightarrow \mathcal{L}^{(\nu)}(x)$ only as insertions

$$\begin{array}{lll} \langle \mathcal{O} \rangle &=& \mathcal{Z}^{-1} \int \mathrm{D}\phi \, \mathrm{e}^{-\mathcal{S}_{\mathrm{light}} - a^4 \sum_x \overline{\psi}_{\mathrm{h}}(x) [D_0 + \delta m] \psi_{\mathrm{h}}(x)} \, \mathcal{O} \\ && \times \left\{ 1 - a^4 \sum_x \mathcal{L}^{(1)}(x) + \ldots \right\} \\ &\equiv& \langle [1 - a^4 \sum_x \mathcal{L}^{(1)}(x)] \, \mathcal{O} \, \rangle^{\mathrm{stat}} \end{array}$$

$$\begin{split} \langle \mathcal{O} \rangle &= \langle \mathcal{O} \rangle^{\mathrm{stat}} + \omega_{\mathrm{kin}} \sum_{x} \langle \mathcal{O} \mathcal{O}_{\mathrm{kin}}(x) \rangle^{\mathrm{stat}} + \omega_{\mathrm{spin}} \sum_{x} \langle \mathcal{O} \mathcal{O}_{\mathrm{spin}}(x) \rangle^{\mathrm{stat}} \\ &= \langle \mathcal{O} \rangle^{\mathrm{stat}} + \omega_{\mathrm{kin}} \langle \mathcal{O} \rangle^{\mathrm{kin}} + \omega_{\mathrm{spin}} \langle \mathcal{O} \rangle^{\mathrm{spin}} \end{split}$$

Coefficients $\omega_i^{(\nu)}$, $\alpha_i^{(\nu)}$ have to cancel power divergences

Matching in a finite volume

The coefficients $\omega_{\rm kin}, \omega_{\rm spin}, \dots \omega_{N_{\rm HQET}}$ of HQET need to be fixed non perturbatively.

This is achieved by the matching with QCD

$$\Phi_i^{ ext{QCD}}(L_1) = \Phi_i^{ ext{HQET}}(L_1) \qquad i = 1, \dots, N_{ ext{HQET}}$$

This requires to be able to simulate the heavy quark with finite mass. \Rightarrow ln a small volume ($L_1 \simeq 0.4 \text{ fm}$), with $am_b \ll 1$.

Evolution to a large volume

The observables are evolved in a large volume within the effective theory

Strategy

b-quark mass, the static approximation

• Choose $\Phi^{\text{QCD}}(L, M) = L\Gamma^{\text{QCD}}(L, M)$, a 'finite volume meson mass'.

- At the leading order of HQET (static approximation) In infinite volume $m_{\rm B}(M) = E^{\rm stat} + m_{\rm bare}$ In finite volume $\Gamma^{\rm QCD}(L_1, M) = \Gamma^{\rm stat}(L_1) + m_{\rm bare}$
- Use the matching in L_1 and introduce a intermediate volume L_2

$$m_{\rm B}(M) = \underbrace{E^{\rm stat} - \Gamma^{\rm stat}(L_2)}_{a \to 0} + \underbrace{\Gamma^{\rm stat}(L_2) - \Gamma^{\rm stat}(L_1)}_{a \to 0} + \underbrace{\Gamma^{\rm QCD}(L_1, M)}_{a \to 0}$$

• Solve (in the continuum) $m_{\rm B}(M_b) = m_{\rm B}^{exp}$

b quark mass, the 1/m correction

At the LO, in infinite volume

$$m_{\rm B} = \underbrace{E^{\rm stat} + m_{\rm bare}}_{\rm LO}$$

 \Rightarrow Need 1 observable Φ .

b quark mass, the 1/m correction

At the NLO, in infinite volume

$$m_{\rm B} = \underbrace{E^{\rm stat} + m_{\rm bare}}_{\rm LO} + \underbrace{\omega_{\rm kin} E^{\rm kin} + \omega_{\rm spin} E^{\rm spin}}_{\rm NLO}$$

 \Rightarrow Need 3 observables Φ_1, Φ_2, Φ_3 .

b quark mass, the 1/m correction

At the NLO, in infinite volume

$$m_{\rm B} = \underbrace{E^{\rm stat} + m_{\rm bare}}_{\rm LO} + \underbrace{\omega_{\rm kin} E^{\rm kin} + \omega_{\rm spin} E^{\rm spin}}_{\rm NLO}$$

 \Rightarrow Need 3 observables Φ_1, Φ_2, Φ_3 .

Or, consider the spin-averaged B meson $\Rightarrow \omega_{\rm spin}$ cancels

$$m_{\rm B}^{\rm av} \equiv rac{1}{4}m_{\rm B} + rac{3}{4}m_{\rm B}^* = E^{
m stat} + m_{
m bare} + \omega_{
m kin}E^{
m kin}$$

 \Rightarrow Need two observables $\Phi_1, \Phi_2,$ and the spin splitting term becomes a separate issue.

Implementation : Schrödinger functional

Implementation: Schrödinger functional of size $T \times L^3$

- Dirichlet boundary conditions in time (at $x_0 = 0$ and $x_0 = T$)
- Periodic boundary conditions in space, up to a phase $\Psi(x + \hat{k}L) = e^{i\theta}\Psi(x)$.

Transition amplitude for $C(x_0 = 0) \rightarrow C'(x_o = T)$ $\mathcal{Z}[C', C] = \langle C' | e^{-\mathbb{H}T} \mathbb{P} | C \rangle$

Correlators in the effective theory

Axial and vector (non-improved) current, in QCD

$$egin{array}{rcl} \mathcal{A}_{\mu}(x) &=& \overline{\psi}_{\mathrm{l}}(x)\gamma_{\mu}\gamma_{5}\psi_{\mathrm{b}}(x) \ V_{\mu}(x) &=& \overline{\psi}_{\mathrm{l}}(x)\gamma_{\mu}\psi_{\mathrm{b}}(x) \end{array}$$

and in HQET

$$A^{
m stat}_{\mu}(x) = \overline{\psi}_{
m l}(x) \gamma_{\mu} \gamma_5 \psi_{
m h}(x)$$

With order-a improvement

$$\begin{aligned} (A_{\rm I})_{\mu}(x) &= A_{\mu}(x) + c_{\rm A}A^{(1)}_{\mu}(x) \\ (V_{\rm I})_{\mu}(x) &= V_{\mu}(x) + c_{\rm V}V^{(1)}_{\mu}(x) \\ (A^{\rm stat}_{\rm I})_{\mu}(x) &= A^{\rm stat}_{\mu}(x) + c^{\rm stat}_{\rm A}A^{\rm stat(1)}_{\mu}(x) \end{aligned}$$

Note that $c_{\rm A}^{\rm stat} = \mathcal{O}(1/m)$

Implementation: 2 pts functions in QCD

Boundary to current correlators

$$f_{\rm A}(x_0) = -\frac{a^6}{2} \sum_{\mathbf{y}, \mathbf{z}} \left\langle (A_{\rm I})_0(x) \left(\overline{\zeta}_{\rm b}(\mathbf{y}) \gamma_5 \zeta_{\rm I}(\mathbf{z}) \right) \right\rangle$$
$$k_{\rm V}(x_0) = -\frac{a^6}{6} \sum_{\mathbf{y}, \mathbf{z}, k} \left\langle (V_{\rm I})_k(x) \left(\overline{\zeta}_{\rm b}(\mathbf{y}) \gamma_k \zeta_{\rm I}(\mathbf{z}) \right) \right\rangle$$

and boundary to boundary correlator

$$f_{1} = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{y}, \mathbf{z}, \mathbf{y}', \mathbf{z}'} \left\langle \left(\overline{\zeta}'_{b}(\mathbf{y}')\gamma_{5}\zeta'_{l}(\mathbf{z}')\right) \left(\overline{\zeta}_{b}(\mathbf{y})\gamma_{5}\zeta_{l}(\mathbf{z})\right) \right\rangle \overset{\mathsf{T}}{\underset{[f]}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\overset{\mathsf{T}}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}{\underset{[f]}}{\underset{[f]}$$

Implementation: 2 pts functions in the static theory

Boundary to current correlators

$$f_{\rm A}^{\rm stat}(x_0) = -\frac{a^6}{2} \sum_{\mathbf{y}, \mathbf{z}} \left\langle (A_{\rm I}^{\rm stat})_0(x) \left(\overline{\zeta}_{\rm h}(\mathbf{y}) \gamma_5 \zeta_{\rm I}(\mathbf{z})\right) \right\rangle$$

and boundary to boundary correlator

$$f_{1}^{\text{stat}} = -\frac{a^{12}}{2L^{6}} \sum_{\mathbf{y}, \mathbf{z}, \mathbf{y}', \mathbf{z}'} \left\langle \left(\overline{\zeta}'_{\text{h}}(\mathbf{y}')\gamma_{5}\zeta'_{1}(\mathbf{z}')\right)\left(\overline{\zeta}_{\text{h}}(\mathbf{y})\gamma_{5}\zeta_{1}(\mathbf{z})\right)\right\rangle \xrightarrow[]{\text{eff}}_{\text{space}}$$

Heavy quark expansion

At the NLO of heavy quark effective theory

current to boundary correlators

$$egin{array}{rcl} f_{
m A} &\propto f_{
m A}^{
m stat} + c_{
m A}^{
m hqet}f_{\delta
m A}^{
m stat} + \omega_{
m kin}f_{
m A}^{
m kin} + \omega_{
m spin}f_{
m A}^{
m kin} \ k_{
m V} &\propto f_{
m A}^{
m stat} + c_{
m V}^{
m hqet}f_{\delta
m A}^{
m stat} + \omega_{
m kin}f_{
m A}^{
m kin} - rac{1}{3}\omega_{
m spin}f_{
m A}^{
m kin} \end{array}$$

boundary to boundary correlators

$$\begin{array}{ll} f_1 & \propto & f_1^{\rm stat} + \omega_{\rm kin} f_1^{\rm kin} + & \omega_{\rm spin} f_1^{\rm spin} \\ \\ k_1 & \propto & f_1^{\rm stat} + \omega_{\rm kin} f_1^{\rm kin} - \frac{1}{3} \omega_{\rm spin} f_1^{\rm spin} \end{array}$$

Remark on the strategy for the b-quark mass

Two different strategies:

- Use boundary to boundary correlators
 - \Rightarrow Need to fix $m_{\rm bare}$, $\omega_{\rm kin}$
 - \Rightarrow Need two observables.
- Use boundary to current correlators
 - \Rightarrow Need to fix m_{bare} , ω_{kin} and a L.C. of $c_{\text{A}}^{\text{hqet}}$ and $c_{\text{V}}^{\text{hqet}}$.
 - \Rightarrow Need three observables.

An example: elimination of $\omega_{\rm kin}$

• In QCD build the ratios $R_1^{\rm P} = \ln \left(\frac{f_1(\theta_1)}{f_1(\theta_2)} \right)$ and $R_1^{\rm V} = \ln \left(\frac{k_1(\theta_1)}{k_1(\theta_2)} \right)$

Write down the corresponding expansions

$$\begin{array}{lll} R_1^{\rm P} & = & R_1^{\rm stat} + \omega_{\rm kin} R_1^{\rm kin} + \omega_{\rm spin} R_1^{\rm spin} \\ R_1^{\rm V} & = & R_1^{\rm stat} + \omega_{\rm kin} R_1^{\rm kin} - \frac{1}{3} \omega_{\rm spin} R_1^{\rm spin} \end{array}$$

An example: elimination of $\omega_{\rm kin}$

• In QCD build the ratios $R_1^{\rm P} = \ln \left(\frac{f_1(\theta_1)}{f_1(\theta_2)} \right)$ and $R_1^{\rm V} = \ln \left(\frac{k_1(\theta_1)}{k_1(\theta_2)} \right)$

Write down the corresponding expansions

$$\begin{array}{lll} R_1^{\mathrm{P}} & = & R_1^{\mathrm{stat}} + \omega_{\mathrm{kin}} R_1^{\mathrm{kin}} + \omega_{\mathrm{spin}} R_1^{\mathrm{spin}} \\ R_1^{\mathrm{V}} & = & R_1^{\mathrm{stat}} + \omega_{\mathrm{kin}} R_1^{\mathrm{kin}} - \frac{1}{3} \omega_{\mathrm{spin}} R_1^{\mathrm{spin}} \end{array}$$

• Then define the observables (in small volume L_1)

$$\Phi_{1} = \underbrace{\frac{1}{4} (R_{1}^{\mathrm{P}} + 3R_{1}^{\mathrm{V}})}_{R_{1}^{\mathrm{av}}} - \underbrace{\frac{R_{1}^{\mathrm{stat}}}{\Phi_{1}^{\mathrm{stat}}}}_{\Phi_{1}^{\mathrm{stat}}} = \underbrace{\omega_{\mathrm{kin}} R_{1}^{\mathrm{kin}}}_{\mathcal{O}(1/m)}$$

An example: elimination of $\omega_{\rm kin}$

• In QCD build the ratios $R_1^{\rm P} = \ln \left(\frac{f_1(\theta_1)}{f_1(\theta_2)} \right)$ and $R_1^{\rm V} = \ln \left(\frac{k_1(\theta_1)}{k_1(\theta_2)} \right)$

Write down the corresponding expansions

$$\begin{array}{lll} R_1^{\mathrm{P}} & = & R_1^{\mathrm{stat}} + \omega_{\mathrm{kin}} R_1^{\mathrm{kin}} + \omega_{\mathrm{spin}} R_1^{\mathrm{spin}} \\ R_1^{\mathrm{V}} & = & R_1^{\mathrm{stat}} + \omega_{\mathrm{kin}} R_1^{\mathrm{kin}} - \frac{1}{3} \omega_{\mathrm{spin}} R_1^{\mathrm{spin}} \end{array}$$

• Then define the observables (in small volume L_1)

$$\Phi_{1} = \underbrace{\frac{1}{4} (R_{1}^{P} + 3R_{1}^{V})}_{R_{1}^{av}} - \underbrace{\frac{R_{1}^{stat}}{\Phi_{1}^{stat}}}_{\mathcal{O}(1/m)} = \underbrace{\frac{\Phi_{1}(2L_{1})}{\Phi_{1}(L_{1})}}_{\mathcal{H}QET} \underbrace{\Phi_{1}(L_{1})}_{\mathcal{O}QCD''} = \underbrace{\left[\frac{R_{1}^{kin}(2L_{1})}{R_{1}^{kin}(L_{1})}\right]}_{\sigma_{1}} [\Phi_{1}(L_{1})]$$

How does it look like ?

 $\mathsf{QCD} : R_1^{av}(L_1)$

$$\begin{array}{c|c} L_1\simeq 0.4~{\rm fm} \\ \\ L_1/a & 40 & 32 & 24 & 20 \\ \beta & 7.84 & 7.65 & 7.41 & 7.26 \end{array}$$

 $L_1 M = 10.4, 12.1, 10.3$

Cont extr in $(a/L)^2$

How does it look like ?

hyp1 hyp2 $L_1\simeq 0.4~{
m fm}$

Cont extr in $(a/L)^2$

How does it look like ?

 $1/m: \sigma_{11}$

Cont extr in a/L

Observables for the b-quark mass

Define the observable Φ_1 such that

$$\Phi_{1}^{\text{HQET}} = \omega_{\text{kin}} \underbrace{\left\{ \frac{f_{1}^{\text{kin}}(\theta)}{f_{1}^{\text{stat}}(\theta)} - \frac{f_{1}^{\text{kin}}(\theta')}{f_{1}^{\text{stat}}(\theta')} \right\}}_{\text{R}_{1}^{\text{kin}}}$$

and Φ_2 such that

$$\Phi_2^{\mathrm{HQET}}(L) = L[m_{\mathrm{bare}} + \Gamma_1^{\mathrm{stat}} + \omega_{\mathrm{kin}}\Gamma_1^{\mathrm{kin}}]$$

b-quark mass at the 1/m order

- At the NLO of HQET $m_{\rm B} = E^{\rm stat} + m_{\rm bare} + \omega_{\rm kin} E^{\rm kin}$
- Matching 1 $\Phi_1^{\text{QCD}}(L_1) = \omega_{\text{kin}} R_1^{\text{kin}}(L_1)$
- Matching 2 $\Phi_2^{\text{QCD}}(L_1) = L_1 \left[\Gamma_1^{\text{stat}}(L_1) + m_{\text{bare}} + \omega_{\text{kin}} \Gamma_1^{\text{kin}}(L_1) \right]$
- Use the ssf

$$\begin{split} m_{\rm B} &= \frac{\Phi_2^{\rm QCD}(\mathcal{L}_1, \mathcal{M})}{\mathcal{L}_1} + \left[\mathcal{E}^{\rm stat} - \Gamma^{\rm stat}(\mathcal{L}_2) \right] + \sigma^{\rm stat} \\ &+ \left[\frac{\Phi_1^{\rm QCD}(\mathcal{L}_1)}{\mathcal{R}_1^{\rm kin}(\mathcal{L}_2)} \sigma_1^{\rm kin}(\mathcal{E}^{\rm kin} - \Gamma^{\rm kin}(\mathcal{L}_1)) \right] \end{split}$$

• Solve (in the continuum) $m_{\rm B}(M_b) = m_{\rm B}^{exp}$.

Interpolation and static result

$$L_2 m_{\rm B}(M) = 2\Phi_2^{\rm QCD}(L_1, M) + L_2 \left[E^{\rm stat} - \Gamma^{\rm stat}(L_2)\right] + \sigma^{\rm stat}(u_1)$$

We solve $m_{
m B}^{
m stat}(M_{
m b}^{
m stat})=m_{
m B}^{
m exp}=5404~{
m MeV}$ by a linear interpolation

 $M_b^{\mathrm{stat,RGI}} = 6771 \pm 99 \,\mathrm{MeV}$

In the quenched approximation, find [Della Morte et al '05]

$$m_{\rm b}(m_{\rm b}) = \underbrace{4.350(64)}_{
m static} \quad {
m GeV} \underbrace{-0.049(29)}_{O(\Lambda^2/m_{\rm b})} \quad {
m GeV} + \underbrace{O(\Lambda^3/m_{\rm b}^2)}_{
m negligible}$$

Particle Data Group : 4.1 - 4.4 GeVOther lattice results :

4.41(5)(10)[Martinelli & Sachrajda [98]]NLO matching4.30(5)(5)[Martinelli & Sachrajda 98], [Lubicz 01]NNLO matching

Observable(s) for the decay constant

Build an observables related to the decay constant :

$$\Phi_{B}^{\text{QCD}} = \ln\left(\frac{-f_{\text{A}}(x_{0})}{\sqrt{f_{1}}}\right) \quad \stackrel{L \gg 1}{\longrightarrow} \quad \ln\left(\frac{1}{2}F_{\text{B}}\sqrt{m_{\text{B}}L^{3}}\right)$$

and in the effective theory (at the leading order):

$$\Phi_B^{ ext{hqet}} = \ln Z_{ ext{A}}^{ ext{stat}} + \ln \left(rac{-f_{ ext{A}}^{ ext{stat}}}{\sqrt{f_1^{ ext{stat}}}}
ight) + \mathcal{O}(1/m)$$

Strategy for F_{B_s} in the static approximation

The static heavy light decay constant

 $\Phi_B(L_\infty) = \left[\Phi_B^{\mathrm{stat}}(L_\infty) - \Phi_B^{\mathrm{stat}}(L_2)\right] + \left[\Phi_B^{\mathrm{stat}}(L_2) - \Phi_B^{\mathrm{stat}}(L_1)\right] + \Phi_B^{\mathrm{QCD}}(L_1)$

Remarks

• In $Z_{\rm A}^{\rm stat}$ cancels out in the differences

Terms in bracket have a continuum limit.

But $L_{\infty} \simeq 1.5 \text{ fm}$ and $L_1 \simeq 0.4 \text{ fm}$

 \longrightarrow Introduce a volume $L_2 = 2L_1$

• Step scaling functions $\sigma = \left[\Phi_B^{\text{stat}}(L_2) - \Phi_B^{\text{stat}}(L_1)\right]$

Mass dependence from QCD

F_B , including 1/m corrections

At the LO of HQET

$$\Phi_B^{ ext{hqet}} = \ln Z_{ ext{A}}^{ ext{stat}} + \ln \left(rac{-f_{ ext{A}}^{ ext{stat}}}{\sqrt{f_1^{ ext{stat}}}}
ight) + c_{ ext{A}}^{ ext{stat}} rac{f_{\delta ext{A}}^{ ext{stat}}}{f_{ ext{A}}^{ ext{stat}}}$$

\Rightarrow Need 2 observables

F_B , including 1/m corrections

At the NLO of HQET

$$\Phi_{B}^{\text{hqet}} = \ln Z_{A}^{\text{hqet}} + \ln \left(\frac{-f_{A}^{\text{stat}}}{\sqrt{f_{1}^{\text{stat}}}}\right) + c_{A}^{\text{hqet}} \frac{f_{\delta A}^{\text{stat}}}{f_{A}^{\text{stat}}}$$
$$+ \underbrace{\omega_{\text{kin}} \left(\frac{f_{A}^{\text{kin}}}{f_{A}^{\text{stat}}} + \frac{1}{2} \frac{f_{1}^{\text{kin}}}{f_{1}^{\text{stat}}}\right) + \omega_{\text{spin}} \left(\frac{f_{A}^{\text{spin}}}{f_{A}^{\text{stat}}} - \frac{1}{2} \frac{f_{1}^{\text{spin}}}{f_{1}^{\text{stat}}}\right)}{1/m}$$

 \Rightarrow Need 4 observables

Observables for F_B at the $1/m$ order							
Obs	QCD	stat	1/ <i>m</i>				
$\Phi_1 =$	$\frac{1}{4}(R_1^{\rm P}+3R_1^{\rm V})$	$-R_1^{\rm stat}$	$=\omega_{ m kin}R_1^{ m kin}$				
$\Phi_2 =$	$\frac{3}{4}\ln\left(\frac{f_1}{k_1}\right)$		$=\omega_{ m spin}rac{f_1^{ m spin}}{f_1^{ m stat}}$				
$\Phi_3 =$	R _A	$-R_{\rm A}^{\rm stat}$	$= c_{\rm A}^{\rm HQET} R_{\delta \rm A} + \omega_{\rm kin} R_{\rm A}^{\rm kin} + \omega_{\rm spin} R_{\rm A}^{\rm spin}$				

$$\begin{split} \Phi_B &= \ln Z_{\rm A}^{\rm hqet} + \ln \left(\frac{-f_{\rm A}^{\rm stat}}{\sqrt{f_1^{\rm stat}}} \right) + c_{\rm A}^{\rm hqet} \frac{f_{\delta \rm A}^{\rm stat}}{f_{\rm A}^{\rm stat}} \\ &+ \omega_{\rm kin} \left(\frac{f_{\rm A}^{\rm kin}}{f_{\rm A}^{\rm stat}} + \frac{1}{2} \frac{f_{\rm 1}^{\rm kin}}{f_{\rm 1}^{\rm stat}} \right) + \omega_{\rm spin} \left(\frac{f_{\rm A}^{\rm spin}}{f_{\rm A}^{\rm stat}} - \frac{1}{2} \frac{f_{\rm 1}^{\rm spin}}{f_{\rm 1}^{\rm stat}} \right) \end{split}$$

N. Garron (UAM-IFT Madrid)

Non-perturbative $\ensuremath{\textit{HQET}}$ at the $1/\ensuremath{\textit{m}}$ order

Strategy for F_B at the 1/m order (summary)

In a large volume, the decay constant is given by

$$\Phi_B(\mathcal{L}_\infty) = \Big[\Phi_B^{ ext{hqet}}(\mathcal{L}_\infty) - \Phi_B^{ ext{hqet}}(\mathcal{L}_2)\Big] + \Big[\Phi_B^{ ext{hqet}}(\mathcal{L}_2) - \Phi_B^{ ext{hqet}}(\mathcal{L}_1)\Big] + \Phi_B^{ ext{QCD}}(\mathcal{L}_1)$$

where the matching equations are used to eliminate the HQET parameters

$$\Phi_{B}^{\text{hqet}}(2L_{1}) - \Phi_{B}^{\text{hqet}}(L_{1}) = \sigma_{\text{stat}}(u_{1}) + \underbrace{\sum_{i=1}^{3} \sigma_{i}(u_{1}) \Phi_{i}^{\text{QCD}}(L_{1})}_{\mathcal{O}(1/m)}$$

One can also separate the 1/m correction

$$\Phi_B(L) = \Phi_B^{\text{stat}}(L) + \Phi_B^{(1)}(L)$$

Example of results: $\Phi_B(L_1)$

Non-perturbative HQET at the 1/m order

Example of results: $\Phi_B(L_2)$

Non-perturbative HQET at the 1/m order

Example of results in the large volume

$$L_{\infty} = 4L_1 \simeq 1.5 \text{ fm}$$
$$L/a \mid 32 \quad 24 \quad 16 \\ \beta \mid 6.45 \quad 6.3 \quad 6.0$$

Example of results in the large volume

 $L_{\infty} = 4L_1 \simeq 1.5 \text{ fm}$ $L/a \mid \begin{array}{c} 32 & 24 & 16 \\ \beta & 6.45 & 6.3 & 6.0 \end{array}$

Example of results in the large volume

 $L_{\infty} = 4L_1 \simeq 1.5 \text{ fm}$ $L/a \mid \begin{array}{c} 32 & 24 & 16 \\ \beta & 6.45 & 6.3 & 6.0 \end{array}$

Quenched preliminary results in MeV

Statistical errors only

Cont extr very preliminary

Interpolation at the b-quark mass should be done

	$F_{B_s}^{\mathrm{stat}}$	$F_{B_s}^{\mathrm{stat}} + F_{B_s}^{(1)}$			
θ_0		$\theta_1 = 0$	$\theta_1 = 0.5$	$ heta_1=1$	
		$\theta_2 = 0.5$	$\theta_2 = 1$	$\theta_2 = 0$	
0	228 ± 5	200 ± 12	201 ± 12	204 ± 12	
0.5	224 ± 5	200 ± 12	202 ± 12	205 ± 12	
1	212 ± 5	201 ± 12	202 ± 12	206 ± 12	

Table: Results in MeV of F_{B_s} , for the mass z = 12.1

• The 1/m correction can give a $\sim 5 - 15\%$ contribution

• Adding the 1/m correction makes the agreement much better

Improvement: all to all propagators

Conclusion and outlook

- Computation of m_b and F_{B_s} Following [Heitger & Sommer '03]
- Full non-perturbative calculation
- Exact cancelation of the power divergences
- Result includes NLO of HQET
- Find in the quenched approxmation

$$m_{\rm b}(m_{\rm b}) = \underbrace{4.350(64)}_{\rm static} \quad {\rm GeV} \underbrace{-0.049(29)}_{O(\Lambda^2/m_{\rm b})} \quad {\rm GeV}$$

and (preliminary)

$$\begin{array}{rcl} F_{B_s}^{\rm stat} &=& 228 \, \pm \, 5 \, \pm \, \ref{eq:stat} \, {\rm MeV} + \mathcal{O}(1/m) \\ F_{B_s}^{\rm stat} + F_{B_s}^{(1)} &=& 200 \, \pm \, 12 \, \pm \, \ref{eq:stat} \, {\rm MeV} + \mathcal{O}(1/m^2) \end{array}$$

- Still working on improvements (extraction of the matrix elements in the large volume)
- Promising for a precise determination of F_B and F_{B_s} , using dynamical fermions (in progress).