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Introduction

Field theory:

- infinitely many degrees of freedom

and

- effective action involving infinitely many vertex functions (I'(”)
functions)

BUT...

a finite (and small) number of coupling constants (and masses)!

Question: Why not infinitely many couplings (including the non
renormalizable ones)?
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Actually, there are infinitely many coupling constants:
Ising model: V(¢) ~ log(cosh ¢) ~ r¢? + god* + ...

Can we handle them?

Yes, we can!

But it is almost hopeless in perturbation theory = Wilson RG.
(either Polchinski or Wetterich formalisms)

Wilson RG:

integration on fluctuations scale by scale and not order by order in go.
(but needs approximations)

4

RG is at the center of the formalism (no longer any divergence).
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Wilson RG (NPRG)

Idea: Build a one-parameter family of models indexed by a scale k
Z[J] — Zk[J] or for the effective action: T¢] — Tk[¢]

that interpolates between the classical model (no fluctuation) at
k = A(~inverse lattice spacing) and the quantum one (all
fluctuations) at kK = 0.

@ at k = A all fluctuations are frozen: T x_p[¢] = S[¢],
@ at k = 0 all fluctuations are integrated out: Ix—o[¢] = [[¢]

@ for 0 < k < A the model incorporates only the “rapid”
fluctuations: g € [k, A].
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A simple method for freezing the slow modes: give them a large
mass — modify the original model by adding a momentum
dependent mass.

Zi = / Dy e SWI=AE] with AS[¢] = / Ri(q) Pq#—q
q

N =

{ Ri=n(q) = N> = Tizpl¢] = S[9]
Rk=0(q) =0 = T=o[d] = I[¢]
Lowering k by dk consists in integrating over fluctuations in the

shell [k — dk, k] = RG equation:

kokT k[¢] = F[Mk[4]]
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Wetterich equation

Legendre transform of Wj[J] = log Zk[J] (slightly modified)

]+ Wil = [ Jad—q = 5 [ Rl@) 90—

satisfies

kDTl = 5 [ koRe(a) [Pla. o]+ Rila)

q
Difficult because
e functional,
@ partial differential equation,
@ non-linear,
@ integral;
and

@ mass “regulator” = difficulties with gauge invariance.
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N

kokTk[¢] = /kakRk(Q) {rf)[q, o] + Ri(q)

q
but. ..
o it looks like a one-loop equation! = tremendous
simplification,
@ it is a differential version of field theory = solving it with a

given initial condition (bare=microscopic action) is a complete
solution of the problem,

e it is free of any divergence (the integration is on a small
momentum shell thanks to the dxRk(q) term)

@ it is regularized in the infrared by the presence of the scale k
= in massless theories the singularities build up as k — 0,

@ it respects all the symmetries of the problem if the regulator
term does.
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Local Potential Approximation

Solving Wetterich equation = closure of the infinite hierarchy of
equations on the FS(")'S.

Idea: If interested only in low momenta (mass gap, phase diagram,
thermodynamic quantities) then approximate ['[¢] by a derivative
expansion:

rulel = [ (W0 + 320v0P + o7

= Wetterich equation becomes PDF on Vj and Z,. On top of the
derivative expansion: field expansion of Zy(¢):

Zi(¢) = Zk + 0(¢?)

and even take
Zi(¢) =1
Local Potential Approximation (LPA) (no field renormalization).
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LPA:

1 kO Ri(q)
koK Vi(¢) = 5 /q Zkq? + Ri(q) + V()

and for the special choice
R(q) = Zk(K* = ¢*) 0(K* — &°)

we obtain
kd+2

Avg KT
d Zk2+ V](9)

which is an extremely simple equation although highly non trivial!

kok Vi(¢) =
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Structural aspects of RG flows

The LPA equation

@ rules the RG flow of infinitely many couplings:

Vi(¢) = ako + ak2 &> + grka ¢* + g6 0° + ...

@ is not based on an expansion in a small coupling,
@ is valid in any dimension,

@ can be solved with an initial action which is non polynomial
= keeps track of all the “microscopic” information = allows
us to compute non-universal quantities, that is those that
depend on the UV cut-off! (e.g. a critical temperature).

@ predicts the convexity of the effective potential in the broken
phase (impossible within perturbation theory)**.
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Why infinitely many couplings here and only one in perturbation
theory 7 (and a mass)
Perturbation:

r(zn)({pi})\NP ~ 82n

= also infinitely many couplings but all 2" expandable in powers
of ga:
go~cgi+cgl+...

NPRG:
“large river effect” and more generally

decoupling of high momentum modes

Example: ¢* theory in d=3 (massless case). Asymptotically free
theory in the UV:
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e after a transient regime (lattice effects) all trajectories are
very close and are (almost) driven by a single coupling: ga
(and a mass in the massive case);

@ on the trajectory starting from the gaussian, the flow can be
reversed in the UV direction and ends at the gaussian fixed
point: this theory is UV free;

@ almost all memory of the microscopic theory is lost in the IR:
universality.
and we can understand

@ the importance of asymptotic freedom for the decoupling of
rapid modes (or asymptotic safety);

@ the meaning of renormalizability and non-renormalizability;

e for A — oo the difference between the perturbative “infinite
cut-off limit" and the non perturbative “continuum limit".
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Statistical physics

Interest of RG in statistical physics: systems where fluctuations
around the “mean field" approximations are large.

@ occurence of a second order phase transition (at or out-of
thermal equilibrium),

@ systems of fermions (or bosons) showing instabilities:
superconducting, magnetic, etc...
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O(N) models: ferromagnetism

Ferromagnetic systems on a lattice:
(classical) vectors S; of unit norms |S;| = 1. Hamiltonian:

H=-JY 5.5

<ij>
Existence of a phase transition at a critical temperature T,
between

e a symmetric phase: (S;) =0
e and a spontaneously broken phase: (S;) = m; # 0

with a spontaneous symmetry breaking pattern:

O(N) — O(N — 1)
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Why field theory?

Because at T¢:
correlation length £ = m,;l = 00

4

strongly correlated N-body systems

4

Large fluctuations: violations of the law of large number

4

possibility of non-gaussian theories.
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Which field theories?

@ nature of the order parameter (ferro: m; = N-component
vector)
e symmtery breaking pattern (O(N) — O(N — 1))

@ power counting.
_ d (Lion2 1 22 22\ 2
H_/d x <2(v¢) +5r62+g(4?) >
717 :/Dge—H[a?]—fld?

Mean Field:
@ r > 0 symmetric phase: <q§> =0

@ r < 0 broken phase: (¢) # 0
=>rxT-—T,
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What do we compute with field theory?

1) Interest in universal thermodynamic quantities:
o magnetization: M = (32, 5;) o ([ d?x ¢(X)),
@ susceptibility: response of M to a change of the external
source J = magnetic field B: x = ‘?9—’\‘,;’,
@ specific heat ,
@ behavior of the correlation length &,

@ equation of state: f(M, T,B) =0, etc...

Generically
X~ (T—=Te)™™ withX =& x, M, ...

x = critical exponents are universal.

= quantities defined from correlation functions at zero momentum.
= computable from the RG flows of the coupling constant,
normalization of the field and mass around the fixed point.
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2) Interest in non-universal thermodynamic quantities:
@ T, and phase diagram,
o amplitudes X = A (T — T.)™~.
Much more difficult to compute perturbatively because dependence

on (bare) microscopic details.
Example: T, of Ising model in d = 3, cubic lattice.

3) Interest in the momentum dependence of correlation
function(s): T?)(p) at and near T, with or without an external
source (magnetic field): also very difficult perturbatively.

Examples:
@ Ising, d = 2 with a magnetic field: 7 bound states and
symmetry Eg!
@ Ising, d =3, T < T, existence of a “bound state”?
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How do we compute with field theory?

For second order phase transitions: fixed point(s).
3gR(H)

Needs to compute ((g) = at high orders. ¢* theory

computed
@ at five loops in ¢ = 4 — d expansion,
@ at six loops in the zero momentum massive scheme in d =3
(five loops in d = 2).
Proof of Borel-summability of renormalized series in d = 3 for

(¢2)2 = an industry about resummation methods = works well
for O(N) models in d = 3:
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N Resummed pert. exp. Monte-Carlo

n v n v
0 0.0284(25) 0.5882(11) 0.030(3)  0.5872(5)
1 0.0335(25) 0.6304(13) 0.0368(2)  0.6302(1)
2 0.0354(25) 0.6703(15) 0.0381(2)  0.6717(1)
3 0.0355(25) 0.7073(35) 0.0375(5)  0.7112(5)
4 0.035(4)  0.741(6) 0.0365(10) 0.749(2)
10 0.024 0.859

But, N=1,d=2:
1 = 0.25 and at five loops 7 = 0.145(14).

nnprG = 0.254 (good!!).
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Out-of equilibrium Statistical Mechanics

Question: How to handle strongly correlated out of equilibrium
problems?

For example: Directed Percolation the reaction-diffusion process:

2A — A
A — 2A (1)

the particles A can diffuse with a diffusion coefficient D.
@ Phase transition between active and absorbing state.

@ Can we efficiently analyze the long time and large distance
behavior?

@ A widespread typical problem, very hard to handle both
analytically and numerically.
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Non-linear Langevin equations

@ Non-linear Langevin equation
Oep(X, ) = Flel + GlplC(X, 1),
where ( is a local, Gaussian white noise:
(C(%1)) =0,
(R (R 1)) = 28D (% = =)3(t — 1), (2)

Leads to field theories in a way analogous to stochastic
quantization.

But... when no fluctuation-dissipation theorem =- the probability
distribution of stationary states is unknown.
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Examples:

1 Directed Percolation universality class
A realization: the reaction-diffusion process.

@ Can be described by the Langevin equation with multiplicative
noise:

Oep(%,t) = DV2p + oo — \p® + p/o((%, 1) (3)

2 Kardar-Parisi-Zhang equation
Takes the form

Op(%, 1) = vV + S(VeP HoC(%t)  (4)

@ Describes kinetic roughening of a d-dimensional interface
among many other phenomena.

@ Shows generic scaling: no fine-tuning.

@ Mean-field-like approximations fail to describe the rough
phase.
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Model A

describes (one of) the dynamics of the Ising model
satisfies detailed balance (fluctuation-dissipation theorem)
known probability distribution of stationary states: Gibbs
0ed(1.%) = — gt 4 ((£.%)

Powerful supersymmetric methods. Very good perturbative and
non-pertubative results.

® 6 66 6 W
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o Critical exponents:

d (a) LPA[1] [ (b) LPA' 1] (c) MC 2]
” 0.584 0.548 0.581(5)
3 13 0.872 0.782 0.81(1)
z 2 1.909 1.90(1)
v 0.730 0.623 0.734(4)
2 | B 0.730 0.597 0.584(4)
z 2 1.884 1.76(3)
v 1.056 0.888 1.096854(4)
1| B 0.528 0.505 0.276486(8)
z 2 1.899 1.580745(10)
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Disordered systems

Question: relevance of disorder in statiscal systems.

Most famous problems:

@ Random Field Ising Model: dimensional reduction true at all
orders of perturbation theory, but... wrong.

@ Spin glasses.
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Quantum fermionic systems

Specific difficulties:

@ microscopic degrees of freedom = fermions (electrons) =
Fermi surface

@ but... order parameters = bilinear in the fields (e.g.
superconductivity)

@ competition between different kinds of instabilities:
superconductivity, charge (or spin) density waves
corresponding to different kinds of bilinear: (1TT) or (1)Te)),

@ suscpetibility = four point function, depends on three
momenta around the Fermi surface = renormalization of a full
momentum dependent function = functional renormalization.

Crucial advantage: it is unbiased! The RG flow chooses in which
phase the system ends up.
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Most famous example: the Hubbard model

*fZC,SCJS* t Z C/s(:.lsjL Uzn’Tn’l

nn,s nnn,s
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