Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Bertrand Delamotte

Saclay, march 3, 2009

Lattice QCD

Field theory:

- infinitely many degrees of freedom and

- effective action involving infinitely many vertex functions ($\Gamma^{(n)}$ functions)

BUT...

a finite (and small) number of coupling constants (and masses)!

Question: Why not infinitely many couplings (including the non renormalizable ones)?

Actually, there are infinitely many coupling constants: lsing model: $V(\phi) \sim \log(\cosh \phi) \sim r\phi^2 + g_0\phi^4 + \dots$

Can we handle them?

Yes, we can!

But it is almost hopeless in perturbation theory \implies Wilson RG. (either Polchinski or Wetterich formalisms)

Wilson RG:

integration on fluctuations scale by scale and not order by order in g_0 . (but needs approximations)

₩

RG is at the center of the formalism (no longer any divergence).

Wilson RG (NPRG)

<u>Idea</u>: Build a one-parameter family of models indexed by a scale k

 $Z[J] \longrightarrow Z_k[J]$ or for the effective action: $\Gamma[\phi] \longrightarrow \Gamma_k[\phi]$

that interpolates between the classical model (no fluctuation) at $k = \Lambda(\sim \text{inverse lattice spacing})$ and the quantum one (all fluctuations) at k = 0.

- at $k = \Lambda$ all fluctuations are frozen: $\Gamma_{k=\Lambda}[\phi] = S[\phi]$,
- at k = 0 all fluctuations are integrated out: $\Gamma_{k=0}[\phi] = \Gamma[\phi]$
- for 0 < k < Λ the model incorporates only the "rapid" fluctuations: q ∈ [k, Λ].

A simple method for freezing the slow modes: give them a large mass \rightarrow modify the original model by adding a momentum dependent mass.

$$Z_{k} = \int D\varphi \, e^{-S[\varphi] - \Delta S_{k}[\varphi]} \quad \text{with} \quad \Delta S_{k}[\varphi] = \frac{1}{2} \int_{q} R_{k}(q) \, \varphi_{q} \varphi_{-q}$$
$$\begin{cases} R_{k=\Lambda}(q) = \Lambda^{2} \implies \Gamma_{k=\Lambda}[\phi] = S[\phi] \\ R_{k=0}(q) = 0 \implies \Gamma_{k=0}[\phi] = \Gamma[\phi] \end{cases}$$

Lowering k by dk consists in integrating over fluctuations in the shell $[k - dk, k] \Rightarrow \text{RG}$ equation:

$$k\partial_k \Gamma_k[\phi] = F[\Gamma_k[\phi]]$$

Lattice QCD

・ロン ・団 と ・ ヨン ・ ヨン …

æ

Wetterich equation

Legendre transform of $W_k[J] = \log Z_k[J]$ (slightly modified)

$$\Gamma_k[\phi] + W_k[J] = \int_q J_q \phi_{-q} - \frac{1}{2} \int_q R_k(q) \phi_q \phi_{-q}$$

satisfies

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \int_q k\partial_k R_k(q) \left[\Gamma_k^{(2)}[q,\phi] + R_k(q) \right]^{-1}$$

Difficult because

- functional,
- partial differential equation,
- non-linear,
- integral;

and

 $\bullet\,$ mass "regulator" $\Rightarrow\,$ difficulties with gauge invariance.

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \int_q k\partial_k R_k(q) \left[\Gamma_k^{(2)}[q,\phi] + R_k(q) \right]^{-1}$$

but...

- it looks like a <u>one-loop</u> equation! ⇒ tremendous simplification,
- it is a differential version of field theory ⇒ solving it with a given initial condition (bare=microscopic action) is a complete solution of the problem,
- it is free of any divergence (the integration is on a small momentum shell thanks to the $\partial_k R_k(q)$ term)
- it is regularized in the infrared by the presence of the scale $k \Rightarrow$ in massless theories the singularities build up as $k \rightarrow 0$,
- it respects all the symmetries of the problem if the regulator term does.

Local Potential Approximation

Solving Wetterich equation \Rightarrow closure of the infinite hierarchy of equations on the $\Gamma_{\nu}^{(n)}$'s.

<u>Idea</u>: If interested only in low momenta (mass gap, phase diagram, thermodynamic quantities) then approximate $\Gamma_k[\phi]$ by a derivative expansion:

$$\Gamma_k[\phi] = \int_x \left(V_k(\phi) + \frac{1}{2} Z_k(\phi) (\nabla \phi)^2 + O(\nabla^4) \right)$$

 \Rightarrow Wetterich equation becomes PDF on V_k and Z_k . On top of the derivative expansion: field expansion of $Z_k(\phi)$:

$$Z_k(\phi) = Z_k + O(\phi^2)$$

and even take

$$Z_k(\phi)=1$$

Local Potential Approximation (LPA) (no field renormalization).

LPA:

$$k\partial_k V_k(\phi) = \frac{1}{2} \int_q \frac{k\partial_k R_k(q)}{Z_k q^2 + R_k(q) + V_k''(\phi)}$$

and for the special choice

$$R_k(q) = Z_k(k^2 - q^2) \,\theta(k^2 - q^2)$$

we obtain

$$k\partial_k V_k(\phi) = \frac{4v_d}{d} \frac{k^{d+2}}{Z_k k^2 + V_k''(\phi)}$$

which is an extremely simple equation although highly non trivial!

The LPA equation

• rules the RG flow of infinitely many couplings:

$$V_k(\phi) = a_{k,0} + a_{k,2} \phi^2 + g_{k,4} \phi^4 + g_{k,6} \phi^6 + \dots$$

- is not based on an expansion in a small coupling,
- is valid in any dimension,
- can be solved with an initial action which is non polynomial
 ⇒ keeps track of all the "microscopic" information ⇒ allows
 us to compute non-universal quantities, that is those that
 depend on the UV cut-off! (e.g. a critical temperature).
- predicts the convexity of the effective potential in the broken phase (impossible within perturbation theory)**.

Why infinitely many couplings here and only one in perturbation theory ? (and a mass) Perturbation:

$$\Gamma^{(2n)}(\{p_i\})_{|_{\mathrm{NP}}}\sim g_{2n}$$

 \Rightarrow also infinitely many couplings but all $\Gamma^{(2n)}$ expandable in powers of g_4 :

$$g_6\sim c\,g_4^3+c'g_4^4+\ldots$$

NPRG:

"large river effect" and more generally

decoupling of high momentum modes

Example: ϕ^4 theory in d=3 (massless case). Asymptotically free theory in the UV:

Lattice QCD

・ロト ・日・・日・・日・・日・

- after a transient regime (lattice effects) all trajectories are very close and are (almost) driven by a single coupling: g₄ (and a mass in the massive case);
- on the trajectory starting from the gaussian, the flow can be reversed in the UV direction and ends at the gaussian fixed point: this theory is UV free;
- almost all memory of the microscopic theory is lost in the IR: universality.

and we can understand

- the importance of asymptotic freedom for the decoupling of rapid modes (or asymptotic safety);
- the meaning of renormalizability and non-renormalizability;
- for $\Lambda \to \infty$ the difference between the perturbative "infinite cut-off limit" and the non perturbative "continuum limit".

Interest of RG in statistical physics: systems where fluctuations around the "mean field" approximations are large.

- occurrence of a second order phase transition (at or out-of thermal equilibrium),
- systems of fermions (or bosons) showing instabilities: superconducting, magnetic, etc...

Ferromagnetic systems on a lattice: (classical) vectors \vec{S}_i of unit norms $|\vec{S}_i| = 1$. Hamiltonian:

$$H = -J \sum_{\langle i,j
angle} ec{S}_i . ec{S}_j$$

Existence of a phase transition at a critical temperature T_c between

- a symmetric phase: $\langle \vec{S}_i \rangle = 0$
- and a spontaneously broken phase: $\langle \vec{S}_i \rangle = \vec{m}_i \neq 0$

with a spontaneous symmetry breaking pattern:

$$O(N) \rightarrow O(N-1)$$

Why field theory?

Which field theories?

- nature of the order parameter (ferro: m
 _i ⇒ N-component vector)
- symmetry breaking pattern $(O(N) \rightarrow O(N-1))$
- power counting.

$$H = \int d^d x \left(\frac{1}{2} (\nabla \vec{\phi})^2 + \frac{1}{2} r \vec{\phi}^2 + g \left(\vec{\phi}^2 \right)^2 \right)$$
$$Z[\vec{J}] = \int D \vec{\phi} \, e^{-H[\vec{\phi}] - \int \vec{J} \cdot \vec{\phi}}$$

Mean Field:

• r>0 symmetric phase: $\langle ec{\phi}
angle = 0$

•
$$r < 0$$
 broken phase: $\langle \bar{\phi} \rangle \neq 0$
 $\Rightarrow r \propto T - T_c$

What do we compute with field theory?

1) Interest in universal thermodynamic quantities:

- magnetization: $\vec{M} = \langle \sum_i \vec{S}_i \rangle \propto \langle \int d^d x \, \vec{\phi}(\vec{x}) \rangle$,
- susceptibility: response of \vec{M} to a change of the external source J = magnetic field B: $\chi = \frac{\partial M}{\partial B}$,
- specific heat ,
- behavior of the correlation length ξ ,
- equation of state: f(M, T, B) = 0, etc...

Generically

$$X \sim (T - T_c)^{-x}$$
 with $X = \xi, \chi, M, ...$

x = critical exponents are universal.

 \Rightarrow quantities defined from correlation functions at zero momentum.

 \Rightarrow computable from the RG flows of the coupling constant, normalization of the field and mass around the fixed point.

2) Interest in non-universal thermodynamic quantities:

- T_c and phase diagram,
- amplitudes $X = A_x (T T_c)^{-x}$.

Much more difficult to compute perturbatively because dependence on (bare) microscopic details.

Example: T_c of Ising model in d = 3, cubic lattice.

3) Interest in the momentum dependence of correlation function(s): $\Gamma^{(2)}(p)$ at and near T_c with or without an external source (magnetic field): also very difficult perturbatively.

Examples:

- Ising, d = 2 with a magnetic field: 7 bound states and symmetry E_8 !
- Ising, d = 3, $T < T_c$ existence of a "bound state"?

How do we compute with field theory?

For second order phase transitions: fixed point(s). Needs to compute $\beta(g) = \mu \frac{\partial g_R(\mu)}{\partial \mu}$ at high orders. ϕ^4 theory computed

- at five loops in $\epsilon = 4 d$ expansion,
- at six loops in the zero momentum massive scheme in d = 3 (five loops in d = 2).

Proof of Borel-summability of renormalized series in d = 3 for $(\vec{\phi}^2)^2 \Rightarrow$ an industry about resummation methods \Rightarrow works well for O(N) models in d = 3:

But,
$$N = 1$$
, $d = 2$:
 $\eta = 0.25$ and at five loops $\eta = 0.145(14)$.
 $\eta_{\text{NPRG}} = 0.254$ (good!!).

Out-of equilibrium Statistical Mechanics

Question: How to handle strongly correlated out of equilibrium problems?

For example: Directed Percolation the reaction-diffusion process:

$$2A o A$$

 $A o 2A$ (1)

the particles A can diffuse with a diffusion coefficient D.

- Phase transition between active and absorbing state.
- Can we efficiently analyze the long time and large distance behavior?
- A widespread typical problem, very hard to handle both analytically and numerically.

Non-linear Langevin equations

• Non-linear Langevin equation

$$\partial_t \varphi(\vec{x}, t) = F[\varphi] + G[\varphi]\zeta(\vec{x}, t),$$

where ζ is a local, Gaussian white noise:

$$\langle \zeta(\vec{x},t) \rangle = 0,$$

$$\langle \zeta(\vec{x},t) \zeta(\vec{x}',t') \rangle = 2\delta^{(d)}(\vec{x}-\vec{x}')\delta(t-t').$$
(2)

Leads to field theories in a way analogous to stochastic quantization.

But... when no fluctuation-dissipation theorem \Rightarrow the probability distribution of stationary states is unknown.

Examples:

- 1 Directed Percolation universality class A realization: the reaction-diffusion process.
- Can be described by the Langevin equation with multiplicative noise:

$$\partial_t \varphi(\vec{x}, t) = D\nabla^2 \varphi + \sigma \varphi - \lambda \varphi^2 + \mu \sqrt{\varphi} \zeta(\vec{x}, t)$$
 (3)

2 *Kardar-Parisi-Zhang equation* Takes the form

$$\partial_t \varphi(\vec{x}, t) = \nu \nabla^2 \varphi + \frac{\lambda}{2} (\nabla \varphi)^2 + \sigma \zeta(\vec{x}, t)$$
 (4)

- Describes kinetic roughening of a d-dimensional interface among many other phenomena.
- Shows generic scaling: no fine-tuning.
- Mean-field-like approximations fail to describe the rough phase.

3 Model A

- describes (one of) the dynamics of the Ising model
- satisfies detailed balance (fluctuation-dissipation theorem)
- known probability distribution of stationary states: Gibbs

•
$$\partial_t \phi(t, \vec{x}) = -\frac{\delta H}{\delta \phi(t, \vec{x})} + \zeta(t, \vec{x})$$

Powerful supersymmetric methods. Very good perturbative and non-pertubative results.

• Critical exponents:

d		(a) LPA [1]	(b) LPA' [1]	(c) MC [2]
	ν	0.584	0.548	0.581(5)
3	β	0.872	0.782	0.81(1)
	Z	2	1.909	1.90(1)
	ν	0.730	0.623	0.734(4)
2	β	0.730	0.597	0.584(4)
	z	2	1.884	1.76(3)
	ν	1.056	0.888	1.096854(4)
1	β	0.528	0.505	0.276486(8)
	z	2	1.899	1.580745(10)

2

Lattice QCD

< ≣⇒

< 同 ▶

2

Question: relevance of disorder in statiscal systems.

Most famous problems:

- Random Field Ising Model: dimensional reduction true at all orders of perturbation theory, but... wrong.
- Spin glasses.

Specific difficulties:

- microscopic degrees of freedom = fermions (electrons) \Rightarrow Fermi surface
- but... order parameters = bilinear in the fields (e.g. superconductivity)
- competition between different kinds of instabilities: superconductivity, charge (or spin) density waves corresponding to different kinds of bilinear: $\langle \psi^{\dagger}\psi^{\dagger} \rangle$ or $\langle \psi^{\dagger}\psi \rangle$,
- suscpetibility = four point function, depends on three momenta around the Fermi surface ⇒ renormalization of a full momentum dependent function ⇒ functional renormalization.

Crucial advantage: it is unbiased! The RG flow chooses in which phase the system ends up.

Most famous example: the Hubbard model

$$H = -t \sum_{nn,s} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{nnn,s} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

æ

Lattice QCD

2

- ₹ 🖬 🕨

◆ 同 ▶ ◆ 目