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Introduction

Field theory:
- infinitely many degrees of freedom
and
- effective action involving infinitely many vertex functions (Γ(n)

functions)

BUT...

a finite (and small) number of coupling constants (and masses)!

Question: Why not infinitely many couplings (including the non
renormalizable ones)?
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Actually, there are infinitely many coupling constants:
Ising model: V (φ) ∼ log(coshφ) ∼ rφ2 + g0φ

4 + . . .

Can we handle them?

Yes, we can!

But it is almost hopeless in perturbation theory =⇒ Wilson RG.
(either Polchinski or Wetterich formalisms)

Wilson RG:

integration on fluctuations scale by scale and not order by order in g0.
(but needs approximations)

⇓

RG is at the center of the formalism (no longer any divergence).
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Wilson RG (NPRG)

Idea: Build a one-parameter family of models indexed by a scale k

Z [J] −→ Zk [J] or for the effective action: Γ[φ] −→ Γk [φ]

that interpolates between the classical model (no fluctuation) at
k = Λ(∼inverse lattice spacing) and the quantum one (all
fluctuations) at k = 0.

at k = Λ all fluctuations are frozen: Γk=Λ[φ] = S [φ],

at k = 0 all fluctuations are integrated out: Γk=0[φ] = Γ[φ]

for 0 < k < Λ the model incorporates only the “rapid”
fluctuations: q ∈ [k,Λ].
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A simple method for freezing the slow modes: give them a large
mass → modify the original model by adding a momentum
dependent mass.

Zk =

∫
Dϕ e−S[ϕ]−∆Sk [ϕ] with ∆Sk [ϕ] =

1

2

∫
q
Rk(q)ϕqϕ−q

{
Rk=Λ(q) = Λ2 =⇒ Γk=Λ[φ] = S [φ]
Rk=0(q) = 0 =⇒ Γk=0[φ] = Γ[φ]

Lowering k by dk consists in integrating over fluctuations in the
shell [k − dk, k] ⇒ RG equation:

k∂kΓk [φ] = F [Γk [φ]]
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Wetterich equation

Legendre transform of Wk [J] = log Zk [J] (slightly modified)

Γk [φ] + Wk [J] =

∫
q
Jqφ−q −

1

2

∫
q
Rk(q)φqφ−q

satisfies

k∂kΓk [φ] =
1

2

∫
q
k∂kRk(q)

[
Γ

(2)
k [q, φ] + Rk(q)

]−1

Difficult because

functional,

partial differential equation,

non-linear,

integral;

and

mass “regulator“ ⇒ difficulties with gauge invariance.
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k∂kΓk [φ] =
1

2

∫
q
k∂kRk(q)

[
Γ

(2)
k [q, φ] + Rk(q)

]−1

but. . .

it looks like a one-loop equation! ⇒ tremendous
simplification,

it is a differential version of field theory ⇒ solving it with a
given initial condition (bare=microscopic action) is a complete
solution of the problem,

it is free of any divergence (the integration is on a small
momentum shell thanks to the ∂kRk(q) term)

it is regularized in the infrared by the presence of the scale k
⇒ in massless theories the singularities build up as k → 0,

it respects all the symmetries of the problem if the regulator
term does.
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Local Potential Approximation

Solving Wetterich equation ⇒ closure of the infinite hierarchy of

equations on the Γ
(n)
k ’s.

Idea: If interested only in low momenta (mass gap, phase diagram,
thermodynamic quantities) then approximate Γk [φ] by a derivative
expansion:

Γk [φ] =

∫
x

(
Vk(φ) +

1

2
Zk(φ)(∇φ)2 + O(∇4)

)
⇒ Wetterich equation becomes PDF on Vk and Zk . On top of the
derivative expansion: field expansion of Zk(φ):

Zk(φ) = Zk + O(φ2)

and even take
Zk(φ) = 1

Local Potential Approximation (LPA) (no field renormalization).
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LPA:

k∂kVk(φ) =
1

2

∫
q

k∂kRk(q)

Zkq2 + Rk(q) + V ′′
k (φ)

and for the special choice

Rk(q) = Zk(k2 − q2) θ(k2 − q2)

we obtain

k∂kVk(φ) =
4vd

d

kd+2

Zkk2 + V ′′
k (φ)

which is an extremely simple equation although highly non trivial!
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Structural aspects of RG flows

The LPA equation

rules the RG flow of infinitely many couplings:

Vk(φ) = ak,0 + ak,2 φ
2 + gk,4 φ

4 + gk,6 φ
6 + . . .

is not based on an expansion in a small coupling,

is valid in any dimension,

can be solved with an initial action which is non polynomial
⇒ keeps track of all the “microscopic” information ⇒ allows
us to compute non-universal quantities, that is those that
depend on the UV cut-off! (e.g. a critical temperature).

predicts the convexity of the effective potential in the broken
phase (impossible within perturbation theory)**.
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Why infinitely many couplings here and only one in perturbation
theory ? (and a mass)
Perturbation:

Γ(2n)({pi})|NP
∼ g2n

⇒ also infinitely many couplings but all Γ(2n) expandable in powers
of g4:

g6 ∼ c g3
4 + c ′g4

4 + . . .

NPRG:
“large river effect” and more generally

decoupling of high momentum modes

Example: φ4 theory in d=3 (massless case). Asymptotically free
theory in the UV:
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after a transient regime (lattice effects) all trajectories are
very close and are (almost) driven by a single coupling: g4

(and a mass in the massive case);

on the trajectory starting from the gaussian, the flow can be
reversed in the UV direction and ends at the gaussian fixed
point: this theory is UV free;

almost all memory of the microscopic theory is lost in the IR:
universality.

and we can understand

the importance of asymptotic freedom for the decoupling of
rapid modes (or asymptotic safety);

the meaning of renormalizability and non-renormalizability;

for Λ →∞ the difference between the perturbative “infinite
cut-off limit” and the non perturbative “continuum limit”.
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Statistical physics

Interest of RG in statistical physics: systems where fluctuations
around the “mean field” approximations are large.

occurence of a second order phase transition (at or out-of
thermal equilibrium),

systems of fermions (or bosons) showing instabilities:
superconducting, magnetic, etc...
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O(N) models: ferromagnetism

Ferromagnetic systems on a lattice:
(classical) vectors ~Si of unit norms |~Si | = 1. Hamiltonian:

H = −J
∑

<i ,j>

~Si .~Sj

Existence of a phase transition at a critical temperature Tc

between

a symmetric phase: 〈~Si 〉 = 0

and a spontaneously broken phase: 〈~Si 〉 = ~mi 6= 0

with a spontaneous symmetry breaking pattern:

O(N) → O(N − 1)
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Why field theory?

Because at Tc :
correlation length ξ = m−1

R = ∞
⇓

strongly correlated N-body systems
⇓

Large fluctuations: violations of the law of large number
⇓

possibility of non-gaussian theories.
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Which field theories?

nature of the order parameter (ferro: ~mi ⇒ N-component
vector)

symmtery breaking pattern (O(N) → O(N − 1))

power counting.

H =

∫
ddx

(
1

2
(∇~φ)2 +

1

2
r ~φ 2 + g

(
~φ 2

)2
)

Z [~J ] =

∫
D~φ e−H[~φ]−

R
~J.~φ

Mean Field:

r > 0 symmetric phase: 〈~φ〉 = 0

r < 0 broken phase: 〈~φ〉 6= 0

⇒ r ∝ T − Tc
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What do we compute with field theory?

1) Interest in universal thermodynamic quantities:

magnetization: ~M = 〈
∑

i
~Si 〉 ∝ 〈

∫
ddx ~φ(~x)〉,

susceptibility: response of ~M to a change of the external
source J = magnetic field B: χ = ∂M

∂B ,

specific heat ,

behavior of the correlation length ξ,

equation of state: f (M,T ,B) = 0, etc...

Generically

X ∼ (T − Tc)
−x withX = ξ, χ,M, ...

x = critical exponents are universal.

⇒ quantities defined from correlation functions at zero momentum.
⇒ computable from the RG flows of the coupling constant,
normalization of the field and mass around the fixed point.
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2) Interest in non-universal thermodynamic quantities:

Tc and phase diagram,

amplitudes X = Ax(T − Tc)
−x .

Much more difficult to compute perturbatively because dependence
on (bare) microscopic details.
Example: Tc of Ising model in d = 3, cubic lattice.

3) Interest in the momentum dependence of correlation
function(s): Γ(2)(p) at and near Tc with or without an external
source (magnetic field): also very difficult perturbatively.

Examples:

Ising, d = 2 with a magnetic field: 7 bound states and
symmetry E8!

Ising, d = 3, T < Tc existence of a “bound state”?
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How do we compute with field theory?
For second order phase transitions: fixed point(s).

Needs to compute β(g) = µ∂gR(µ)
∂µ at high orders. φ4 theory

computed

at five loops in ε = 4− d expansion,

at six loops in the zero momentum massive scheme in d = 3
(five loops in d = 2).

Proof of Borel-summability of renormalized series in d = 3 for
(~φ 2)2 ⇒ an industry about resummation methods ⇒ works well
for O(N) models in d = 3:
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N Resummed pert. exp. Monte-Carlo
η ν η ν

0 0.0284(25) 0.5882(11) 0.030(3) 0.5872(5)
1 0.0335(25) 0.6304(13) 0.0368(2) 0.6302(1)
2 0.0354(25) 0.6703(15) 0.0381(2) 0.6717(1)
3 0.0355(25) 0.7073(35) 0.0375(5) 0.7112(5)
4 0.035(4) 0.741(6) 0.0365(10) 0.749(2)
10 0.024 0.859

But, N = 1, d = 2:
η = 0.25 and at five loops η = 0.145(14).

ηNPRG = 0.254 (good!!).
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Out-of equilibrium Statistical Mechanics

Question: How to handle strongly correlated out of equilibrium
problems?
For example: Directed Percolation the reaction-diffusion process:

2A → A

A → 2A (1)

the particles A can diffuse with a diffusion coefficient D.

Phase transition between active and absorbing state.

Can we efficiently analyze the long time and large distance
behavior?

A widespread typical problem, very hard to handle both
analytically and numerically.
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Non-linear Langevin equations

Non-linear Langevin equation

∂tϕ(~x , t) = F [ϕ] + G [ϕ]ζ(~x , t),

where ζ is a local, Gaussian white noise:

〈ζ(~x , t)〉 = 0,

〈ζ(~x , t)ζ(~x ′, t ′)〉 = 2δ(d)(~x − ~x ′)δ(t − t ′). (2)

Leads to field theories in a way analogous to stochastic
quantization.

But... when no fluctuation-dissipation theorem ⇒ the probability
distribution of stationary states is unknown.
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Examples:

1 Directed Percolation universality class
A realization: the reaction-diffusion process.

Can be described by the Langevin equation with multiplicative
noise:

∂tϕ(~x , t) = D∇2ϕ+ σϕ− λϕ2 + µ
√
ϕζ(~x , t) (3)

2 Kardar-Parisi-Zhang equation
Takes the form

∂tϕ(~x , t) = ν∇2ϕ+
λ

2
(∇ϕ)2 + σζ(~x , t) (4)

Describes kinetic roughening of a d-dimensional interface
among many other phenomena.

Shows generic scaling: no fine-tuning.

Mean-field-like approximations fail to describe the rough
phase.
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3 Model A

describes (one of) the dynamics of the Ising model

satisfies detailed balance (fluctuation-dissipation theorem)

known probability distribution of stationary states: Gibbs

∂tφ(t,~x) = − δH
δφ(t,~x) + ζ(t,~x)

Powerful supersymmetric methods. Very good perturbative and
non-pertubative results.
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Critical exponents:

d (a) LPA [1] (b) LPA’ [1] (c) MC [2]

ν 0.584 0.548 0.581(5)
3 β 0.872 0.782 0.81(1)

z 2 1.909 1.90(1)

ν 0.730 0.623 0.734(4)
2 β 0.730 0.597 0.584(4)

z 2 1.884 1.76(3)

ν 1.056 0.888 1.096854(4)
1 β 0.528 0.505 0.276486(8)

z 2 1.899 1.580745(10)
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Disordered systems

Question: relevance of disorder in statiscal systems.

Most famous problems:

Random Field Ising Model: dimensional reduction true at all
orders of perturbation theory, but... wrong.

Spin glasses.
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Quantum fermionic systems

Specific difficulties:

microscopic degrees of freedom = fermions (electrons) ⇒
Fermi surface

but... order parameters = bilinear in the fields (e.g.
superconductivity)

competition between different kinds of instabilities:
superconductivity, charge (or spin) density waves
corresponding to different kinds of bilinear: 〈ψ†ψ†〉 or 〈ψ†ψ〉,
suscpetibility = four point function, depends on three
momenta around the Fermi surface ⇒ renormalization of a full
momentum dependent function ⇒ functional renormalization.

Crucial advantage: it is unbiased! The RG flow chooses in which
phase the system ends up.
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Most famous example: the Hubbard model

H = −t
∑
nn,s

c†i ,scj ,s − t ′
∑
nnn,s

c†i ,scj ,s + U
∑

i

ni↑ni↓
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