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Quantum Field Theory and Divergences in Perturbation Theory

• A local QFT has no small fundamental lenght: the action depends only on
products of fields and their derivatives at the same points. In perturbation
theory (PT), propagator has simple power law behavior at short distances and
interaction vertices are constant or differential operators acting on δ-functions.

• Perturbative calculation affected by divergences due to severe short distance
singularities. Impossible to define in a direct way QFT of point like objects.

• The field φi has a momentum space propagator (in d dimensions)

∆i(p) ∼ 1
pσi as p→ ∞ ⇒ [φi] ≡ 1

2(d− σi) (canonical dimension)

• [φ] = 1
2(d− 2 + 2s) for fields of spin s.

It coincides with the natural mass dimension of φ for s = 0, 1
2.

• Dimension of the type α vertices Vα(φi) with nαi powers of the fields φi and
kα derivatives:

δ[Vα(φi)] ≡ −d+ kα +
∑

i

nαi [φi]
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• A Feynman diagram γ represents an integral in momentum space which may
diverge at large momenta. Superficial degree of divergence of γ with L loops,
Ii internal lines of the field φi and vα vertices of type α:

δ[γ] = dL−
∑

i

Iiσi +
∑

α

vαkα

• Two topological relations

Ei + 2Ii =
∑

α n
α
i vα and L =

∑
i Ii −

∑
α vα + 1

⇒ δ[γ] = d− ∑
iEi[φi] +

∑
α vαδ[Vα]

• Classification of field theories on the basis of divergences:

1. Non-renormalizable theories. ∃ i | δ[Vi] > 0 ⇒ diagrams with increasing
number vi of vertices Vi may have arbitrarily large degree of divergence.

2. Super-renormalizable theories. A finite number of diagrams is superficially
divergent (δ[Vi] < 0, ∀ i).

3. Renormalizable theories. δ[Vi] ≤ 0, ∀ i ⇒ only a finite number of sets of
external lines can yield supeficially divergent diagrams.
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Regularization methods

• Due to divergences, QFT can not be defined directly in PT.

• Strategy: modify the theory at large momentum, short distance (e.g. use a
cut-off at large momenta) or otherwise in such a way that Feynman diagrams
become well-defined finite quantities and when some parameter reaches some
limit (e.g. cut-off sent to infinity), one formally recovers the original PT.

1. Cut-off (Pauli Villar’s) regularization: modify the propagator in such a way
that it decreses faster at large momentum. e.g. for a scalar field theory

(p2 +m2)−1 →
(
p2 +m2 + α2

p4

Λ2 + α3
p6

Λ4 + . . .+ αn
p2n

Λ2n−2

)−1

and choose n to make all diagrams convergent. Λ is the cut-off and when
Λ → ∞ the original propagator is recovered. For fermions:

(m+ i 6p)−1 →
[
m+ i 6p

(
α1

p2

Λ2 + . . .+ αn
p2n

Λ2n

)]−1

It does not work for theories in which the action has a definite geometric
character like gauge theories.
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2. Dimensional regularization: analytic continuation of Feynman diagrams to
arbitrary complex values of the dimension d. In 4 dimensions, divergences
appear as poles in 4 − d. In theories with fermions, possible subtleties are
related with the treatment of γ5 for generic d (there are at least three
different ways to deal with this problem: NDR, DR, HV). It preserves all
the symmetries of gauge theories and leads to the simplest perturbative
calculations. However it is defined only in perturbation theory.

3. Lattice regularization: time and space are discretized by putting the theory
on an hypercubic lattice Z

d with lattice spacing a. The dynamical variables
are the values of the field on the lattice sites (for fermion and boson fileds)
or on the link joining two sites (for the gauge fields). Field derivatives are
replaced by finite differences. The theory is modified at short distances and
a−1 acts as an UV cut-off. The lattice regularization preserves most of the
global and local symmetries with the obvious exception of the space-time
O(d) symmetry which is replaced by an hypercubic symmetry. In theories
with fermions there are also problems with chiral symmetry. It is the only
known non-perturbative regularization. The regularized functional integral
can be calculated by non-perturbative methods as e.g. stochastic methods
(Monte Carlo) or strong coupling expansions.
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Perturbative Renormalization

• Simple example: scalar field φ with V (φ) = gφ4 interaction (δ[V ] = 0)

S(φ) =

∫
ddx

(
1
2∂µφ∂µφ+ 1

2m
2φ2 + 1

4!gφ
4
)

• To give a meaning to perturbation theory we replace the action S(φ) by a
regularized action SΛ(φ) (called bare action) for instance by introducing a

momentum cut-off Λ ⇒ (m2−∆) → (m2−∆)Λ = m2−∆+α2
∆2

Λ2 −α3
∆3

Λ4 +. . .

• We introduce two renormalized parameters mr and gr. In d = 4, since
δ[V ] = 0, one can prove that it is possible to rescale

φ→ Z1/2(Λ,mr, gr)φr φr ≡ renormalized field

by choosing the bare parameter m and g as function of mr, gr and Λ such
that all φr correlation functions have a finite limit, order by order, in PT when
Λ → ∞ with mr, gr fixed. For this reason the theory is called renormalizable.
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• We introduce the notion of renormalized action Sr(φr):

SΛ(φ) ≡ Sr(φr) =

∫
d4x

[
1
2φr(m

2
r − ∆)Λφr + 1

4!grφ
4
r

+ 1
2(Z − 1)∂µφr∂µφr + 1

2δm
2φ2
r + 1

4!gr(Zg − 1)φ4
r

]

where (m2
r − ∆)Λ refers to the regularization.

• Identity between Sr(φr) and SΛ(φ) expressed by the set of relations:

φ = Z1/2φr, g = grZg/Z
2, m2 = (m2

r + δm2)/Z

• Sr(φr) = tree − level + counterterms, where the counterterms are
parametrized in terms of the renorm. constants Z, Zg, δm

2 which are
formal series in gr:

δm2 = a1(Λ)gr + a2(Λ)g2
r + . . .

Z = 1 + b1(Λ)gr + b2(Λ)g2
r + . . .

Zg = 1 + c1(Λ)gr + c2(Λ)g2
r + . . .
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• Owing to δ[V ] = 0 in d = 4, the superficial degree of divergence of Feynman
diagrams is independent of the order in PT and one can prove that an(Λ),
bn(Λ) and cn(Λ) can be chosen such that all correlation functions have a
finite large Λ limit, order by order in gr.

• DIGRESSION: renormalization formalism is better expressed in terms of the
1 partcle-irreducible (1PI) generating functional Γ(ϕ) (also called generating
funcional of proper vertices). To obtain it, we have to start from the generating
functional of correlation functions:

Z(J) =
∫

[dφ] exp(−S(φ) + Jφ) ⇒

〈φ(x1) · · ·φ(xn)〉 = 1
Z(J)

δ
δJ(x1)

· · · δ
δJ(xn)

Z(J)
∣∣∣
J=0

from which we define the generating functional of connected correlation
functions W (J) = lnZ(J). W (J) is convex ⇒ has a Legendre transform

Γ(ϕ) = sup
J

[∫
dxJ(x)ϕ(x) −W (J)

]
⇒ ϕ(x) = δW

δJ(x) ⇒ Jstat(x, ϕ)

Γ(ϕ) =
∑

n

1
n!

∫
dx1 · · · dxnΓ(n)(x1, . . . , xn)ϕ(x1) · · ·ϕ(xn)
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• One can show that Γ(n)(x1, . . . , xn) are the 1PI correlators. In particular,
Γ(2)(x1, x2) = [W (2)(x1, x2)]

−1 is the inverse propagator of the field φ.

• We can define Γr(ϕr) as in the case of Sr(φr) and expand it series of gr

Γr(ϕr) = Γ0(ϕr) + grΓ1(ϕr) +O(g2
r)

where it turns out that Γ0(ϕr) = limΛ→∞ SΛ(φr) is the tree-level action and
Γ1(ϕr) contains the counterterms at one-loop (and thus Z, Zg and δm2).

• The insertion of composite operators in correlation functions of elementary
fields require additional RCs (one for each new operator). This can be proven
by adding a new source t (coupled to the composite operator) to Z(J) →
Z(J, t) and computing again the renormalized 1PI generating functional
Γr(ϕ, t). Functional derivatives in t gives the insertions of the new operator
and one obtain the relations between bare and renormalized proper vertices.

• General result of renormalization theory: a composite operator O(φ) with
canonical dimension [O(φ)] = D mixes under renormalization with all the
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(composite) operators of equal or lower dimension allowed by symmetries:

[O(φ(x))]r =
∑

α:[Oα]≤D

ZαOα(φ(x))

The coefficients Zα of the mixing with Oα (with [Oα] = D) are at most
logarithmically divergent. If the regularization is performed through an hard
cut-off Λ (e.g. Pauli-Villar’s or lattice) ⇒ mixing coefficients Zβ of the lower
dimensional operators Oβ may contain power divergences ∼ Λ(D−[Oβ]).

• Imposing correlation functions to be finite at some given order in PT only
determines the divergent part of the renormalisation constants (RCs) Z, Zg
and δm2 at that order (e.g. a1(Λ), b1(Λ) and c1(Λ) at one-loop).

• One can add them arbitrary finite constants. These are fixed through the
choice of the renormalization conditions which results in the renorm. scheme
dependence of renorm. constants and of renormalized field and parameters.
This dependence can be shown to cancel from any physical observable.

• For instance, in the present case we can choose the three following conditions
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in momentum space (consistent with the tree-level approximation):

Γ̃(2)
r (p = 0) = m2

r,
∂
∂p2Γ̃

(2)
r (p)

∣∣∣
p=0

= 1, Γ̃(4)(0, 0, 0, 0) = gr

• These conditions detrmines completely the renormalization constants:

a1(Λ) = −1

16π2

(
Λ2

2 −m2
r ln Λ

mr

)
+O(1), b1(Λ) = 3

16π2 ln Λ
mr

+O(1), c1(Λ) = 0

• Proving the renormalization of a theory at any order of PT is not an
easy task. The 2-point function is quadratically divergent and the 4-point
function logarithmically divergent at any order in PT as power counting shows.
However, beyond one-loop a new difficulty arises: superficially convergent
diagrams have divergent sub-diagrams. Some of them can be made finite
through the insertion at higher order of counterterms of lower order. Some
other diagrams present the problem of the so-called overlapping divergences
and in order to prove that also them can be made finite a more sophisticated
technique has been developed (the so called BPHZ prescription).

• To conclude, one can prove that in field theories with vertices Vα such that
δ[Vα] ≤ 0,∀α all the correlation functions can be made finite by choosing a
finite number of counterterms as function of the renormalized parameters and
of the regularization method used.
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• In field theories for which ∃ α | δ[Vα] > 0, the number of counterterms needed
increases with the order of PT and thus is infinite. These theories are therefore
called non-renormalizables. This is the case of Effective Field Theories (EFT)
which represent the approximation in some limit of an underlying, more
fundamental, theory. Two examples are:

1. Chiral Perturbation Theory (ChPT), i.e. the effective theory of QCD at
small momenta and quark masses. It describes interactions of light hadrons
by automatically encoding the constraints coming from the pattern of
spontaneous chiral symmetry breaking. The parameters of the expansion
are momenta and masses of the corresponding Goldstone bosons.

2. Heavy Quark Effective Theory (HQET), i.e. the effective theory which
describes the interactions of an heavy quark with other light quarks. It is
based on an expansion of QCD in inverse powers of the heavy quark mass.

• In the case of ChPT, the interaction of light mesons is completely perturbative
in their masses and momenta (the strong interacting quark fields are not
anymore the elementary degrees of freedom of the theory as instead in QCD).

• On the contrary, HQET is perturbative in the (inverse) heavy quark mass but
is still non-perturbative in the strong interaction between the light quarks and
the heavy quark, at a given order in heavy quark mass expansion. We will
present the case of non-perturbative HQET later in this course.
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• Non-renormalizable theories are still very useful in the limit for which they
have been conceived. If one can fix all the counterterms at a given order in
the expansion by using a certain number of observables, then the theory can
predict the value of other observables at that order.

Renormalization Group Equations

• Relation between bare and renormalized n-point 1PI correlation functions

Γ̃(n)
r (p1, . . . , pn; gr,mr,Λ) = Z(gr,

mr
Λ )(n/2)Γ̃(n)(p1, . . . , pn; g,m,Λ)

Take the logarithmic derivative of Γ
(n)
r with respect to mr at g, Λ fixed

l.h.s.: mr
∂

∂mr
Γ̃

(n)
r

∣∣∣
g,Λ

= mr
∂

∂mr
Γ̃

(n)
r + mr

∂gr
∂mr

∣∣∣
g,Λ

∂
∂gr

Γ̃
(n)
r

r.h.s.: mr
∂

∂mr
(Z(n/2)Γ̃(n))

∣∣∣
g,Λ

= n
2mr

∂ lnZ
∂mr

∣∣∣
g,Λ

Γ̃
(n)
r + Z(n/2) mr

∂
∂mr

Γ̃(n)
∣∣∣
g,Λ

Putting them together on obtain the Callan-Symanzik equation

[
mr

∂
∂mr

+ βr(gr,
mr
Λ ) ∂

∂gr
− n

2ηr(gr,
mr
Λ )

]
Γ̃(n)
r = (2 − ηr(gr,

mr
Λ ))m2

rΓ̃
(1,n)
r
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where βr(gr,
mr
Λ ) ≡ mr

∂gr
∂mr

∣∣∣
g,Λ

, ηr(gr,
mr
Λ ) ≡ mr

∂ lnZ
∂mr

∣∣∣
g,Λ

and the r.h.s. term Γ̃
(1,n)
r corresponds to the insertion of φ2

r at zero momentum

in Γ̃
(n)
r . Moreover, if the Γ

(n)
r have a finite limit when Λ → ∞ than βr and

ηr have also such a limit where they become functions of gr only.

• The Callan Symanzik equation can be used to prove renormalizability
inductively on the number of loops in PT.

• Bare RG equation. Detailed prturbative analysis shows that

Γ̃(n)
r (pi; gr,mr,Λ) = Γ̃(n)

r (pi; gr,mr) +O(Λ−2(lnΛ)L)

Differentiating Γ̃
(n)
r (pi; gr,mr,Λ) with respect to Λ at gr, mr fixed ⇒

Λ ∂
∂Λ(Z(n/2)(g, mr

Λ )Γ̃(n)(pi; g,m,Λ))
∣∣∣
gr,mr

= O(Λ−2(lnΛ)L)
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• We neglect here terms subleading by powers of Λ (called scaling violations)

[
Λ ∂
∂Λ + β(g) ∂∂g − n

2η(g) − η2(g)(m
2 −m2

c)
∂

∂m2

]
Γ̃(n)(pi; g,m,Λ) = 0

β(g) ≡ Λ∂g
∂Λ

∣∣
gr,mr

η(g) ≡ −Λ∂ lnZ
∂Λ

∣∣
gr,mr

η2(g) ≡ −Λ∂ lnZ2/Z
∂Λ

∣∣
gr,mr

where Z2 is a new renormalization constant for the composite operator φ2

and where β, η and η2 can be shown to be independent of mr/Λ in the large
Λ limit (up to some correction which goes to zero like some power of mr/Λ).

• We want to relate βr(gr)=mr
∂gr
∂mr

∣∣
g,Λ

and β(g)=Λ∂g
∂Λ

∣∣
gr,mr

. For dimensional

reasons gr = gr(g,mr/Λ) and thus

0 = Λ∂gr
∂Λ

∣∣
gr,mr

=
(
β(g) ∂∂g + Λ ∂

∂Λ

)
gr(g,mr/Λ) =

(
β(g) ∂∂g −mr

∂
∂mr

)
gr(g,mr/Λ)

⇒ β(g)∂gr∂g = βr(gr) i.e. the sign and the zeros of β and βr are the same.

• β and βr can be used to understand the behaviour of g and gr when the
cut-off Λ is removed (i.e. in the scaling region Λ → ∞) which, in the case of
the lattice regularization, corresponds to the continuum limit (a ∼ 1/Λ → 0).
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Fixed Points

• Equation for gr (with a ∼ 1
Λ):

βr(gr) = mr
∂gr
∂mr

∣∣
g,Λ

= mra
∂gr
∂mra

∣∣
g,Λ

with solution ln mra
mra

=

∫ gr

ḡr

dg
βr(g)

• Consider the case in which βr has two simple zeros: one with positive slope
in g1 and the other with negative slope in g2 (βr(gr) > 0 for g1 < gr < g2).

1. If g1 > ḡr, mra→ 0 at fixed g ⇒ gr increases → g1.
2. If g1 < ḡr < g2, mra→ 0 at fixed g ⇒ gr decreases → g1.
3. If ḡr > g2, mra→ 0 at fixed g ⇒ gr increases away from g2.

• Similarly, equation for g:

β(g) = −a∂g∂a
∣∣
gr,mr

= −mra
∂g

∂mra

∣∣
gr,mr

with solution ln mra
mra

= −
∫ g

ḡ

dg′

β(g′)

• Owing to the fact that β has tha same sign and the same zeros of βr:

1. If g1 > ḡ, mra→ 0 at fixed gr ⇒ g decreases away from g1.
2. If g1 < ḡ < g2, mra→ 0 at fixed gr ⇒ g increases → g2.
3. If ḡ > g2, mra→ 0 at fixed gr ⇒ g decreases → g2.
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• At fixed g, gr driven toward g1 and away from g2.
At fixed gr, g driven toward g2 and away from g1.
g1 called Infra-Red (IR) fixed point while g2 Ultra-Violet (UV) fixed point.

• UV fixed points yield the possibility of continuum limits with a variety of gr.
IR fixed points determine these bounds on gr. Defining a continuum limit
away from an UV fixed point, gr will approach an IR fixed point.

• In the gφ4 theory, g = 0 is an IR fixed point (Gaussian fixed point) and every
continuum limit in this domain will have gr = 0 i.e. a non-interacting theory.
The possibility of a non-trivial continuum limit require an UV fixed point
which however has been proven not to exist in the whole range g ∈ [0,∞]

• In pure Yang-Mills, g = 0 is an UV fixed point (asymptotic freedom) and
thus for fixed gr the continuum limit is obtained by sending the bare coupling
to zero. The solution of the equation for g by using β(g) at two-loop is

a = 1
ΛLAT

exp
(
− 1

2β0g2

)
(β0g

2)−β1/(2β
2
0){1 +O(g2)}

whose integration constant defines the mass scale ΛLAT . ΛLAT appears
despite the fact that gauge theories do not contain any mass scale.
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• ⇒ Every physical quantity P with dimensions of a mass is proportional to
ΛLAT , i.e. P = CPΛLAT and P satisfies the RG equation

[
a ∂∂a − β(g) ∂∂g

]
P = O(a2)

• For two such quantities P1 and P2, the ratio P1
P2

=
CP1
CP2

{1+O(a2)} is constant

up to small O(a2) artifacts. This is called the scaling region.

• DIGRESSION: continuum massive QCD. To understand the (perturbative)
renormalization properties of the continuum theory, dimensional regularization
is the most suited. The action read:

S(Aµ, q̄i, qi) = −
∫
d4x

[
1
4TrF 2

µν +
∑

i

q̄i[γµ(∂µ − igAµ) +mi]qi

]

+ ghost and gauge fixing term. We renormalize the action through:

Aµ = Z
1/2
3 Arµ, qi = Z1/2

q qri , mi = Zmm
r
i , g = Zggrµ

ǫ

where ǫ = 4 − d and µ is an arbitrary mass scale introduced to keep gr
dimensionless in arbirary dimension d.
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• The bare parameters g and m are µ-independent ⇒ gr = gr(µ). Through
the Zi = Zi(gr) factors also mr

i become µ-dependent (but they are not
observable). The µ-dependence should cancel in observable quantities.

• The Callan-Symanzik equation for a (µ-independent) physical observable read
[
µ ∂
∂µ + βr(gr)

∂
∂gr

− γr(gr)mr
∂

∂mr

]
P (x; gr,mr, µ) = 0

βr(gr) ≡ µ∂gr∂µ
∣∣
mr

γr(gr) ≡ − µ
mr

∂mr
∂µ

∣∣
gr

where one can choose a mass-independent renormalization scheme in which
βr and γr are mass independent.

• The Callan-Symanzik equation has two independent standard solutions called
RG invariants (RGI): the ΛQCD-parameter and the RGI quark mass M

ΛQCD = µ (β0g
2
r)

−β1/(2β
2
0)e

(
−

1
2β0g2

r

)
exp

( ∫ gr
0
dh

[
1

βr(h) + 1
β0h3 − β1

β2
0h

])

M = mr(2β0g
2
r)

−γ0/(2β0) exp
( ∫ gr

0
dh

[γr(h)
βr(h) + γ0

β0h

])

• Every physical quantity in massive QCD is function of ΛQCD and M .
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Lattice Regularization of QCD

• Let’s consider the naive discretization of the free fermion action:

Snaive = a4
∑

x

{ 1

2a

∑

µ

[ψ̄(x)γµψ(x+ µ) − ψ̄(x)γµψ(x− µ)] +mψ̄(x)ψ(x)
}

= (2π)4
∫
d4p ψ̄(−p)

(
i
∑

µ

γµ
sin apµ
a +m

)
ψ(p)

• Problem with the corresponding propagator:
sin apµ
a ∼ pµ + O(a2) for a → 0

in the neighborood of pµ = 0 and π/a. So in this formulation there are 24

fermions (fermion doubling problem).

• Wilson regularization: add the term

SW = Snaive −
a3r

2

∑

µ,x

[ψ̄(x)ψ(x+ µ) + ψ̄(x+ µ)ψ(x) + 2ψ̄(x)ψ(x)]

∼
∫
d4xψ̄[γµ∂µ +m]ψ − ar

2

∫
d4xψ̄∂2ψ +O(a2) as a→ 0

• Now, for each component pµ close to π/a, the mass is increased by r/a ⇒
2d− 1 spurious states disappear in the continuum limit (usually r is set to 1).
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• By adding the coupling to the gauge links and the pure gauge action one
obtains Wilson regularizatilon of QCD.

• The Wilson term is an irrelevant operator do dimension 5 which disappears at
tree-level in the continuum limit. Its presence breaks explicitly chiral symmetry
which is recovered at tree-level for a→ 0 (if the soft-breaking term m = 0).

• However, at higher orders in PT, the factor a in front of the Wilson term is
compensated by 1/ap divergences in the loops, leading to finite or divergent
contributions. The formal chiral properties of QCD are lost: m→ 0 does not
correspond to the chiral limit but there is an additive mass renormalization and
operators belonging to different chiral representations mix among themselves.

• Fermion doubling and chiral symmetry are deeply related as shown by the
Nielsen-Ninomiya no-go theorem: the following desirable properties of a
massless free lattice Dirac operator D(x)

1. D(x) is local (bounded by Ce−|x|/ρ with ρ ∝ a);
2. D̃(p) = iγµpµ +O(ap2) for p≪ π/a;

3. D̃(p) is invertible for p 6= 0 (no massless doublers);
4. γ5D +Dγ5 = 0 (chiral symmetry);

can not hold simultaneously.
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• Since it is not possible to give up the first three properties, it seems impossible
to have chiral symmetry on the lattice. Therefore, this last problem seems
not to be a peculiarity of Wilson fermions.

• Way out: instead of property 4, require the massless Dirac operator D to
satisfy the Ginsparg-Wilson relation γ5D +Dγ5 = aDγ5D.

• ⇒ the action
∫
d4xψ̄Dψ is invariant under the modified chiral symmetry:

ψ → ψ + ǫγ̂5ψ, ψ̄ → ψ̄ + ǫψ̄γ5, where γ̂5 = γ5(1 − aD)

• The chiral projectors P̂∓ = 1
2(1 ∓ γ̂5) and P± = 1

2(1 ± γ5) (for fermion
and antifermion fields respectively) allow to eliminate the right-handed (left-
handed) components by imposing P̂∓ψ = ψ and ψ̄P± = ψ̄.

• An operator which satisfy the Ginsparg-Wilson relation is given by

D = 1
a

{
1 − (1−aDw)√

(1−aDw)†(1−aDw)

}

which coincides with Dw up to O(a) lattice artifacts.
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• Despite the exact chiral symmetry of the action, the fermion meausure is not
invariant und the axial anomaly is recovered à la Fujikawa.

• Operator mixing is now constrained by chiral symmetry exactly as in the
continuum (e.g. there is no additive mass renormalization).

• Chiral gauge theories can be meaningfully defined on the lattice. There is a
proof in PT and a non-perturbative proof for abelian gauge groups.

• Despite this success, numerical simulations are still much more expensive than
for Wilson fermions. We therefore continue the discussion of the latter.

Chiral Ward-Takahashi Identities on the Lattice

• Despite the explicit breaking of chiral symmetry with Wilson fermions, it is still
possible to construct a set of currents that, for a → 0 are partially conserved
and obey Current Algebra ⇒ it is also possible to construct operators with
well defined chiral transformations properties.

• Lattice analog of continuum WTI. Local infinitesimal SUL(Nf) × SUR(Nf)
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non-anomalous chiral transformation:

δψ(x) = ǫ
[
αaV (x)λ

a

2 + αaA(x)λ
a

2 γ5

]
ψ(x)

δψ̄(x) = −ǫψ̄(x)
[
αaV (x)λ

a

2 − αaA(x)λ
a

2 γ5

]
(1)

• the time-ordered vacuum expectation value of a multilocal operator
O(x1, ..., xn) ≡ O1(x1)...On(xn) is given by the lattice functional integral

〈O(x1, . . . , xn)〉 = 1
Z

∫
[dUdψdψ̄]O(x1, . . . , xn)e

−SWQCD[U,ψ̄,ψ] (2)

• WTI are a consequence of the invariance of (2) under local changes of the
fermionic integration variables. Under (1) we have

〈
δO(x1,...,xn)

δαa(x)

∣∣∣
αa(x)=0

〉
−

〈
O(x1, . . . , xn)

δSQCD
δαa(x)

∣∣∣
αa(x)=0

〉
= 0 (3)

where we consider either αa = αaV 6= 0, αaA = 0 (vector transformation) or
αa = αaA 6= 0, αaV = 0 (axial transformation).
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Vector WT Identity on the Lattice

i〈δO(x1,...,xn)
δαa

V
(x) 〉 = 〈O(x1, . . . , xn)∇µ

xṼ
a
µ (x)〉 +

+〈O(x1, . . . , xn)ψ̄(x)[λ
a

2 ,m]ψ(x) , 〉

where (x1 6= x2 6= . . . xn), ∇µ
xf(x) = (f(x) − f(x− µ))/a and

Ṽ aµ (x) = 1
2[ψ̄(x)(γµ − 1)Uµ(x)

λa

2 ψ(x+ µ) +

+ψ̄(x+ µ)(γµ + 1)U †
µ(x)

λa

2 ψ(x)]

• In the following we are interested in on-shell matrix elements of the currents
between hadronic states (created by O(x1, . . . , xn)). Contact terms coming
from the l.h.s of (3) are irrelevant in the large distance limit in which the
on-shell matrix elements are extracted. Then we see that the point-split vector
current is partially conserved (PCVC)

〈α|∇µ
xṼ

a
µ (x)|β〉 = 〈α|ψ̄(x)[λ

a

2 ,m]ψ(x)|β〉

• In the limit of degenerate bare quark masses it becomes 〈α|∇µ
xṼ

a
µ |β〉 = 0.
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• By imposing the analogous WTI of the renormalized theory it is possible to
show that ZeV = 1 (non-renormalization theorem). This result is valid for
any non-anomalous PCC for which the global symmetry is bronken by a term
of dimension lower than the dimension of the lagrangian.

• The local vector current V aµ (x) = ψ̄(x)λ
a

2 γµψ(x) is not conserved on the
lattice but it differ from the conserved current by a finite renormalization.

• relation between the conserved current and the local current

Ṽ aµ (x) = V aµ (x) + 1
2

{
ψ̄(x)(γµ − 1)λ

a

2 [Uµ(x)ψ(x+ µ) − ψ(x)]

+ [ψ̄(x+ µ)U †
µ(x) − ψ̄(x)](γµ + 1)λ

a

2 ψ(x)
}

where the second term on the r.h.s. is a 4-dim operator ∆a
µ times a.

• Consider the amputated Green’s function ΛeV (p) defined by:

ΛO(p1, p2) = S̃−1(p1)G̃O(p1, p2)S̃
−1(p2), S̃(p) = a4

∑
x1
eipx1〈ψ(x1)ψ̄(x2)〉,

G̃O(p1, p2) = a8
∑

x1,x2
ei(p1x1−p2x2)〈ψ(x1)O(0)ψ̄(x2)〉

⇒ ΛeV (p) = ΛV (p) + aΛ∆(p). aΛ∆(p) vanishes at tree-level as a→ 0.
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• Beyond tree-level however it contributes due to power divergences induced
by mixing with lower dimensional operators. Mixing with operators of the
same dimension gives at most logarithmic terms which vanish, when a → 0,
as a ln(ap). The only lower dimensional operator is V aµ ⇒ one has a−1

divergences (without logs) multiplied by the a factor in front ⇒ aΛ∆(p) gives
finite contributions which combine with those from ΛV (p) to give ZeV = 1.
⇒ ZV (g2) 6= 1 (being finite it can only depend on the coupling g2, not on µ).

• The WTI can now be expreessed in terms of V aµ , it suffices to substitute Ṽ aµ
by ZV V

a
µ . ZV can be computed non-perturbatively from suitable WTI.

Axial WT Identity on the Lattice

• In the continuum, out of the chiral limit, the non-singlet axial current is
partially conserved (PCAC) ∂µ(ψ̄(x)γµγ5

λa

2 ψ(x)) = ψ̄(x){λa2 ,m}ψ(x) and
ZA = 1 for the non-renormalization theorem.

• On the lattice, however, the (5 dimensional) Wilson term breaks explicitly
chiral symmetry ⇒ As we will see in a moment, ZA remains finite but 6= 1.
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i〈δO(x1,...,xn)
δαaA(x) 〉 = 〈O(x1, . . . , xn)∇µ

xÃ
a
µ(x)〉

−〈O(x1, . . . , xn)ψ̄(x){λa2 ,M0}γ5ψ(x)〉 − 〈O(x1, . . . , xn)X
a(x)〉

where Ãaµ(x) = 1
2[ψ̄(x)γµγ5Uµ(x)

λa

2 ψ(x+ µ)

+ ψ̄(x+ µ)γµγ5U
†
µ(x)

λa

2 ψ(x)]

Xa is the variation of the Wilson term under the axial transformation. It’s
a 5-dim operator multiplied by a which can not be cast in the form of a
4-divergence ⇒ vanishes at tree-level when a→ 0. It has been shown that it
has divergent matrix elements beyond tree-level.

• It is possible to suitably redefine operators and bare parameters in such a way
that the continuum renormalized axial WTI has the same form it assumes
when chiral symmetry is preserved.

• One can define X
a

which is multiplicatively renormalizable and vanishes as
a → 0: subtract from Xa the operators of lower dimensionality (allowed by
symmetries) with whom it mixes
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X
a
(x) = Xa(x) + ψ̄(x){λa2 ,m}γ5ψ(x) + (Z eA − 1)∇µ

xÃ
a
µ(x)

• dimensional analysis + existence of continuum limit ⇒ Z eA(g2, am) is finite,
whereas m(g,m) diverges linearly as a−1 (without logarithmic divergences).

• insertion of X
a
(x) with elementary fields vanishes as a ln ap when a → 0

while extra divergent localized contributions (δsor derivatives of δs) appears
when X

a
(x) is inserted with composite operators ⇒

Z eA〈α|∇µ
xÃ

a
µ(x)|β〉 = 〈α|ψ̄{λa2 , (m−m)}γ5ψ|β〉 + 〈α|Xa|β〉

• 〈α|Xa|β〉 → 0 when a → 0 and we recover the standard PCAC provided
the lattice renormalized axial current to be defined as Âaµ ≡ ZÃÃ

a
µ and we

identify the chiral limit as the one in which m = m(g2,m), whose solution is
called mcr. It easy to prove that mcr has to be flavour singlet and that ZÃ,
analogously to ZV , can only depend on g2.

• The separation between ∇µÃµ and Xa in is not unique. We can always add
Xa a total divergence and correspondingly modify the definition of Aµ. ZA
changes in such a way to preserve the PCAC relation Âaµ ≡ ZÃÃ

a
µ ≡ ZAA

a
µ.

One can for example use the local axial current Aaµ ≡ ψ̄(x)λ
a

2 γµγ5ψ(x).
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• Non-perturbatively, the vanishing of the matrix elements of X
a

between
on-shell hadron states may determine only the ratio ρ = Z−1

A (m −m) and
another condition is needed to compute separately ZA and (m−m).

Chiral Composite Operators

• Let Oi[n] be a basis of operators which at tree-level transform according to the

irreducible representation [n] of the chiral group

1
i

δOi[n](0)

δαf
= (rf[n])

ijOj[n](0)

with rf[n] the f thgenerator of an axial transformation in the representation [n].

• Wilson term ⇒ radiative corrections induce mixing among operators with
different (nominal) chiral properties.

• Is it possible to find suitable linear combinations (with coefficients cij[n,n′]) of

operators belonging to different chiral representations which, up to O(a), will
trasform according to the irrep [n]? ∃ {cij[n,n′]} such that
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Ôi[n] = ZOi(O
i
[n] +

∑

n′ 6=n,j

cij[n,n′]O
j
[n′]) ≡ ZOiÕ

i
[n]

obeys WTIs formally identical to the continuum ones (for simplicity we
consider operators Oi[n] multiplicatively renormalizable in the continuum)?

• Important remark: with a generalization of the argument proposed for ZV one
can show that WTIs can only determine scale independent (i.e. finite) mixing
coefficients (e.g. the c’s), RCs (e.g. ZA, ZV ) or ratios of RCs for which the
dependence on the renormalization scale cancel out (e.g. ZP/ZS, ZOi/ZOj).

• To fix the c’s and the ratios ZOi/ZOj, we write the renormalized integrated
lattice axial WTI

∑

x

∇µ〈h1|T (Âfµ(x)Ô
i
[n](0)) |h2〉 =

=
∑

x

[
〈h1|T (ψ̄γ5{λ

f

2 ,m−m}ψ(x)Ôi[n](0)) |h2〉 +

+〈h1|T (X
f
(x)Ôi[n](0)) |h2〉

]
− i〈h1|

δÔi[n](0)

δαf
|h2〉

31



where we have neglected the contribution of the axial rotation of Oh1 and
Oh2 (which create the hadrons h1 and h2 from the vacuum). These terms
are localized at large positive and negative times t1 and t2 and can be safely
neglected at least if the hadrons h1 and h2 are lighter than the corresponding
chiral rotated states.

• In the chiral limit, m = mcr and the first tirm on the r.h.s. is missing but the
presence of Goldstone bosons gives a non vanishing contribution to the l.h.s.
Out of the chiral limit there are no Goldstone bosons and therefore the l.h.s.
vanishes but not the first term of the r.h.s.

• Thus, in the chiral limit we can compute c’s and ZOi/ZOj from the condition

∑

x

〈h1|T (X
f
(x)Ôi[n](0)) |h2〉 − i〈h1|

δÔi[n](0)

δαf
|h2〉 =

= (rf[n])
ij〈h1|Ôj[n](0) |h2〉

• The insertion of X vanishes on-shell but it gives raise to localized contact
terms when it touches Ô. The equations which fix c’s and ZOi/ZOj express
the fact that the contact terms combine with the messy contribution from the
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second term in the l.h.s. to give for the Ôi[n] the continuum WTI

∑

x

∇µ〈h1|T (Âfµ(x)Ô
i
[n](0)) |h2〉 ≡ 〈h1|[Qf5 , Ôi[n](0)]|h2〉 = (rf[n])

ij〈h1|Ôj[n](0) |h2〉

where Qf5 ≡ ∑
x
Âf0(x, t) are the axial charges.

• The same results can be found out of the chiral limit. In this case however
there are subtleties related to the presence of extra power divergences which
arises because of the insertion of the (integrated) pseudoscalar density in
correlators containing Ô[n].

• Õ defined by this procedure has the same renormalization properties of the
continuum one (for simplicity we consider a multiplicatively renormalizable
operator). The overall scale-dependent (and thus logarithmically divergent)
renormalization constant ZO is needed to obtain the renormalized operator
Ô(µ) = ZO(µa,ΛQCDa)Õ(a) (we have assumed a mass-independent
renormalizationn scheme which is guaranteed by computing the RCs in the
chiral limit). Only at this point we can perform the continuum limit of the
matrix element computed on the lattice.
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• Crucial observation: the subtraction of lower dimensional operators (multiplied
by power-divergent mixing coefficients) must be performed non-perturbatively,
because non-perturbative contributions of the form ∝ exp(−1/2β0g

2), when
multiplied by a−1, will lead, as a→ 0, to a non-vanishing constant contribution
a−1 exp(−1/2β0g

2) ∼ ΛQCD.

• For the logarithmically divergent RCs and even the finite mixing
coefficient/RCs, it turns out that bare lattice PT is badly convergent.
Various recipes have been tried out in order to improve the convergence
of the perturbative expansion, however none of them seems completely
reliable and univerally applicable (without considering the fact that lattice
perturbation theory can be hardly pushed beyond one-loop). There are several
regularizations where some of the bilinears have RCs of the order of ∼ 0.4÷0.5
and it is difficult to trust a parturbative calculation at one-loop which gives a
result so different from 1. For these reasons non-perturbative renormalization
has been developed and intensively studied in the last years.

• Two types of scheme have been developed in order to compute non-
perturbatively scale-dependent RCs: infinite-volume schemes (the RI-MOM
scheme) and finite-volume schemes (the Schrödinger functional scheme).
They will be presented later in these lectures.
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• Concerning the actual determination of the mixing coefficients c’s in Monte
Carlo simulations, we notice that, by varying the external hadronic states,
one can get, in principle, a number of independent conditions sufficient to fix
them completely. However, this is unpractical, because it would require high
precision Monte Carlo measurements of a large number of hadronic matrix
elements. Various possible strategies have been proposed to overcome these
difficulties, some of them being presented later in these lectures.

• A final observation concerns the case in which one is interested in 〈h1|i
δÔ[n]

δαf
|h2〉

where i
δÔ[n]

δαf
presents spurious lattice mixing while Ô[n], thanks to additional

symmetries, renormalizes as in the continuum (e.g. multiplicatively). Then

one may use the renormalized WTI above to obtain directly 〈h1|i
δÔ[n]

δαf
|h2〉 by

computing the matrix element of the “simpler” operator Ô[n] together with
the integrated divergence of the axial current. This matrix element does not
present in fact spurious lattice mixing! [Becirevic,..., Papinutto (2000) ]

Non-perturbative Renormalization via WTI on Hadron States

• 〈α|Xa|β〉 → 0 as a→ 0 determines only ρ = Z−1
A (m−m).

• ρ extracted from the axial WTI with O(x1) = P 21(x1) = ψ̄2(x1)γ5ψ1(x1):
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ZA∇µ
x〈A12

µ (x)P 21(x1)〉 =

= 〈X12
(x)P 21(x1)〉 +

[
m1 +m2 −m1 −m2

]
〈P 12(x)P 21(x1)〉

where mi(g
2,m) and mi are the ith diagonal element of m(g2,m) and m.

• The renormalized quark mass is defined as (noticing that m(mcr) = mcr)

m̂ = Z̄m[m−m(m) ] = Z̄m[m−mcr − ∂m
∂m

∣∣
mcr
(m−mcr) + . . .]

• the renormalized axial WTI ⇒ ZP = 1/Z̄m. Since 〈X(x)P̂ (x1)〉 → 0 when
a→ 0

2ρ12 = Z−1
A [m1+m2−m1−m2] =

∇x
µ〈A

12
µ (x)P 21(x1)〉

〈P 12(x)P 21(x1)〉
=

∇
x0
0

R
dx〈A12

0 (x)P 21(x1)〉R
dx〈P 12(x)P 21(x1)〉

• In order to determine ZA, ZV and ZP/ZS we need to impose other conditions.
The idea is to impose that the non-linear relations of Current Algebra should
be satisfied by the renormalized currents V aµ = ZV V

a
µ , Âaµ = ZAA

a
µ.
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• take the axial WTI with O(x1, x2) = Abν(x1)V
c
ρ (x2):

∇µ〈Âaµ(x)Abν(x1)V
c
ρ (x2)〉 =

= 〈ψ̄γ5{λ
a

2 ,m−m}ψ(x)Abν(x1)V
c
ρ (x2)〉 + 〈Xa

(x)Abν(x1)V
c
ρ (x2)〉

− ifabdδ(x− x1)〈V dν (x1)V
c
ρ (x2)〉 − ifacdδ(x)〈Abν(x1)A

d
ρ(x2)〉

• The insertion of X
a

with Abν(x1)V
c
ρ (x2) is a sum of terms localized at

x = x1, x2. Using flavor symmetry one has

〈Xa
(x)Abν(x1)V

c
ρ (x2)〉 = − ik1f

abdδ(x− x1)〈V dν (x1)V
c
ρ (x2)〉

−ik2f
acdδ(x− x2)〈Abν(x1)A

d
ρ(x2)〉 + ...

where . . . represent localized (Schwinger) terms which vanish after integration
upon x. The axial WTI should have the same form as the continuum one ⇒

k1 =
ZV
ZA

− 1 k2 =
ZA
ZV

− 1
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〈[∇µ
xA

a
µ(x) − ψ̄(x){λa2 , ρ}γ5ψ(x)]Abν(x1)V

c
ρ (x2)〉 =

+iZV
Z2
A
fabdδ(x− x1)〈V dν (x1)V

c
ρ (x2)〉 + i 1

ZV
facdδ(x− x2)〈Abν(x1)A

d
ρ(x2)〉

• Out of the chiral limit, after integration over x and over x1 (with x0
1 6= x0

2 to
eliminate Schwinger terms) we obtain

∫
dxdx1〈ψ̄(x){1

2λ
a, ρ}γ5ψ(x)Abν(x1)V

c
ρ (x2)〉 =

−iZV
Z2
A
fabd

∫
dx1〈V dν (x1)V

c
ρ (x2)〉 − i 1

ZV
facd

∫
dx1〈Abν(x1)A

d
ρ(x2)〉

• Taking ν = ρ = 0, the first term on the r.h.s. is zero (conserved vector charge
on the vacuum) ⇒ determine ZV by knowing ρ.

• Taking ν = ρ = k (spatial) ⇒ determine ZA by knowing ρ and ZV .

• Taking O(x1, x2) = P 12(x1)P
31(x2), where P 12 = ψ̄1γ5ψ2 and x 6= x1, x2,

so to avoid contact terms, the vector WTI

ZV∇x
µ〈P 12(x1)V

23
µ (x)P 31(x2)〉 = (m2 −m3)〈P 12(x1)S

23(x)P 31(x2)〉
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• The renormalized mass can be defined to be m̂ = Zm[m −mcr] where the
chiral limit is then m→ mcr. In PT, at tree-level, mcr = −4/a. By requiring
that the renormalized quantities obey the nominal vector WI ⇒ ZS = Z−1

m

• Analogously, when O(x1, x2) = Sg(x1)P
h(x2) (with f 6= g, h)

∫
d4x

∫
dx1 〈ψ̄(x){1

2λ
f , ρ}ψ(x)Sg(x1)P

h(x2)〉 =

ZP
ZAZS

dfgl
∫
d3

x1 〈P l(x1)P
h(x2)〉 + ZS

ZAZP
dfhl

∫
d3

x1 〈Sg(x1)S
l(x2)〉

one can extract ZP/ZS which is of course a function of g2 only ⇒ P and S
have the same anomalous dimension.

• ZP/ZS can be obtained also from the two ways of defining the renormalized
quark mass m̂

ZP
ZS

= m−m(m)
m−mcr

= 1 − ∂m(g2,m)
∂m

∣∣
m=mcr

+ . . .
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• In practice one obtain ZP/ZS by computing the slope of

ρZA = m−m =
ZP
ZS

[m−mcr]

as function of m (it depend on ZA but not on mcr).

• In the unimproved theory all this results are valid up to O(a) terms. In the
O(a) improved theory, results are valid up to O(a2) terms.

• Numerical results from [Becirevic, Gimenez, Lubicz, Martinelli, Papinutto, Reyes (2005) ]

RI/MOM WTI SF BPT 1-loop

β ROME ROME LANL ALPHA cSW = 1 cNPSW

ZV 6.2 0.783(3) 0.789(2) 0.7874(4) 0.792(1) 0.7959 0.8463

6.4 0.801(2) 0.804(2) 0.8018(5) 0.803(1) 0.8076 0.8480

ZA 6.2 0.819(3) 0.812(5)(2) 0.818(5) 0.807(8) 0.8163 0.8624

6.4 0.832(3) 0.843(10)(1) 0.827(4) 0.827(8) 0.8269 0.8628

ZP

ZS
6.2 0.877(5) 0.877(5)(1) 0.884(3) [0.886(9)] 0.9449 0.9545

6.4 0.894(3) 0.914(10)(1) 0.901(5) [0.908(9)] 0.9491 0.9594
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