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Local Continuum Effective Theory

• Close to the continuum limit the lattice QCD may be described in terms of a
local effective theory (LET) with action

Seff =

∫

d4x
{

L0(x) + aL1(x) + a2L2(x) + . . .
}

where L0 denotes the continuum QCD lagrangian while the other terms are
to be interpreted as operator insertions in the continuum theory.

• Originally, Symanzik defines the continuum theory using dimensional
regularization, but we could also employ a lattice with spacing very much
smaller then a to give a precise meaning to L0(x) and the operator insertions.

• Lk’s, k ≥ 1, are linear combinations of local composite operators of dimension
4 + k which respect the symmetries of the lattice theory. The dimension
counting here includes the (non-negative) powers of the quark mass m by
which some of the fields may be multiplied.
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• L1 for instance must be a linear combination of

O1 = ψ̄σµνFµνψ O3 = mTr
{

FµνFµν

}

O5 = m2 ψ̄ψ

O2 = ψ̄DµDµψ + ψ̄D
←

µD
←

µψ O4 = m
{

ψ̄γµDµψ + ψ̄D
←

µγµψ
}

• Cut-off effects originate not only from the lattice action but also from the
local composite fields that one is interested in. Let φ(x) be some local gauge
invariant field constructed from the quark and gluon fields on the lattice (for
simplicity we consider φ(x) to be multiplicatively renormalizable). We expect
the connected renormalized n-point correlation functions

Gn(x1, . . . , xn) = (Zφ)n 〈φ(x1) . . . φ(xn)〉con

to have a well-defined continuum limit if all points x1, . . . , xn are kept at
non-zero distances from one another.

• In the LET the renormalized lattice field Zφφ(x) is represented by an effective
field

φeff(x) = φ0(x) + aφ1(x) + a2φ2(x) + . . .
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where the fields φk(x) are linear combinations of local fields with the
appropriate dimension and symmetry properties.

• To order a the lattice correlation functions are then given by

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

−a

∫

d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+a

n
∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con +O(a2),

where the expectation values on the right-hand side are to be taken in the
continuum theory with lagrangian L0.

• The second term is the contribution of the O(a) correction in the effective
action. The integral over y in general diverges at the points y = xk. A
subtraction prescription is needed but its precise definition is unimportant
because the arbitrariness that one has amounts to a local operator insertion
at these points, i.e. to a redefinition of the field φ1(x).
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• Not all the a-dependence comes from the explicit factors of a. Other sources
are the operators φ1 and L1, which are linear combinations of some basis of
fields. While the basis elements are a-independent, the coefficients are not
(although they vary slowly with a). In PT they are polynomials in ln a.

• Remark: all on-shell quantities can be extracted from correlation functions
of local composite fields and these correlation functions are only required
at non-zero physical distances ⇒ the LET can be simplified considerably if
attention is restricted to such correlation functions.

• Let’s consider the term containing L1(y). L1(y) is a linear combination of
the fields displayed above. As long as y is kept away from xk, we can
apply the field equations of the continuum theory to conclude that certain
linear combinations of these fields do not contribute. This remains true after
integration over y up to contact terms that arise in x1, . . . , xk and which
amount to operator insertions. Symmetries allow only contact terms with the
same form of φ1 and thus they can be compensated by a redefinition of φ1

• The linear combinations of {O1,O2,O3,O4,O5} which vanish can be found at
tree-level in PT by applying the classical field equations. We find two relations
which allow eliminate O2 and O4. At non-zero couplings the coefficients in
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the linear combinations change but the linear dependence still hold (barring
dingular events). We may take L1 to be a linear combination of O1,O3, O5.

• similiar arguments may be used to eliminate some of the basis fields from
which φ1 is constructed. Since x1, . . . , xk are kept at non-zero distances no
contact terms can arise when the field equations are applied.

Improved Lattice Action

• The orginal idea of improvement consists in adding, to both the action and
operators, a complete set of higher-dimensional (irrelevant) operators, the
coefficients of which are tuned as to cancel finite cut-off effects (to a desired
order of a).

• We start with the lattice action. We add a suitable O(a) counterterm to the
Wilson action such that the O(a) term in the LET is cancelled. From what
we have said above, L1(y) can be made to vanish by adding a counterterm

a5
∑

x

{

c1Ô1 + c3Ô3 + c5Ô5

}

where Ôk is some lattice representation of Ok.
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• Apart from the renormalization of the bare parameters and the tuning of the
ck’s, the discretization ambiguities that one has here are of O(a2).

• We can choose to represent Tr
{

FµνFµν

}

and ψ̄ψ by the Wilson plaquette
and the local scalar density already appearing in the Wilson action. The O(a)
counterterms c3Ô3 and c5Ô5 then amount to a renormalization of g and m
(this will not be insignificant as explained in the following).

• For the on-shell O(a) improved action we thus obtain Simpr[U, ψ̄, ψ] =
SW [U, ψ̄, ψ] + δS[U, ψ̄, ψ] where SW is the Wilson action and

δS[Uψ̄, ψ] = a5csw
i
4

∑

x

ψ̄(x)σµνF̂µν(x)ψ(x)

where F̂µν is a lattice representation of Fµν built from four plaquette loops
around the point x in the µ−ν plane (Sheikholeslami-Wohlert or clover term).

• csw in the SW term is a function of the bare coupling g chosen so that O(a)
cut-off effects cancel in on-shell quantities. csw = 1 at tree-level in PT.
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Improved Lattice Bilinears

• to improve on-shell quantities one has to improve also the local composite
fields used in the correlators. Let’s treat the case of the axial current

Aa
µ(x) = ψ̄(x)γµγ5

1
2τ

aψ(x) P a(x) = ψ̄(x)γ5
1
2τ

aψ(x)

(we consider only the case of two-degenerate light quarks. In the case of non-
degenerate quarks, e.g.Nf =2+1, more improvement coefficients are required).

• the on-shell O(a) improved lattice field is then given by φI(x) = φ(x)+aδφ(x)
where δφ is a linear combination of a lattice representation of the linear
independent fields appearing at O(a).

• taking into account the transformation properties of Aa
µ under lattice

symmetries and charge conjugation one finds

(O6)
a
µ = ψ̄(x)γ5

1
2τ

aσµνDνψ(x) − ψ̄(x)D
←

νσµνγ5
1
2τ

aψ(x)

(O7)
a
µ = ψ̄(x)γ5

1
2τ

aDµψ(x) + ψ̄(x)D
←

µγ5
1
2τ

aψ(x) (O8)
a
µ = mψ̄(x)γµγ5

1
2τ

aψ(x)
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• (O6)
a
µ can be related to the other two via field equations and so may

be dropped. The O(a) counterterms associated to (O8)
a
µ amounts to a

renormalization of Aa
µ. Since we have not imposed any renormalization

condition so far we postpone the discussion of this issue. We are left with

δAa
µ(x) = cA

1
2(∂
∗

µ + ∂µ)P a(x)

• cA depends on g and has to be chosen so as to achieve the cancellation of
O(a) cut-off effects. In PT it is of order g2 because at tree-level Aa

µ is already
on-shell improved (up to the mass-dependent factor mentioned above).

• For the other bilinear a similar analysis shows that

δV a
µ (x) = cV

1
2(∂
∗

µ + ∂µ)T a
µν(x) δP a(x) = 0 δSa(x) = 0

δT a
µν(x) = cT

1
2

[

(∂∗µ + ∂µ)V a
ν (x) − (∂∗ν + ∂ν)V

a
µ (x)

]

where we have again neglected the mass-dependent renormalization factor.
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Mass-Independent Renormalization Schemes

• In the improved theory the renormalization conditions on the gauge coupling,
quark mass and improved composite fields must be chosen with care. We
want correlation functions of the renormalized fields, at fixed non-zero physical
distances and fixed renormalized coupling and mass, to converge to the
continuum limit with rate ∝ a2 (after having tuned csw, cA, cV , cT ).

• We could impose all renormalization conditions on a set of renormalized
correlation functions defined at the same point (g, am) in the bare parameter
space. In this case, the O(a) mass-dependent renormalization term we have
dropped until now would not be necessary to have O(a) improvement.

• A disavantage of this kind of schemes is however that the renormalized
coupling and fields implicitly depend on the quark mass.

• Mass-independent renormalization schemes, where one imposes the
renormalization conditions at zero quark mass, hare intrinsically simpler and
better suited to discuss the scale evolution of the renormalized parameters.
⇒ to obtain O(a) improvement, mass-dependent renormalization factors of
the bare parameters can not be ignored.
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• Naive mass-independent schemes. Due to additive mass renormalization, in
the plane of bare parameters a critical line m = mcr(g) is expected to exist
where the physical quark mass vanishes. We want to parametrize the theory
around this line and we introduce the subtracted mass mq = m−mcr.

• Remark: mcr(g) depends on how the precisely the physical quark mass is
defined. Different definition lead to values of mcr(g) which differ by O(a)
artifacts. In the improved theory they will be O(a2) and so we neglect them.

• Common to choice of renormalized parameters gr and mr in a mass-
independent scheme to be related to the bare parameters through

g2
r = g2Zg(g

2, aµ) mr = mqZm(g2, aµ)

where µ is the renormalization scale and

Zi(g
2, aµ) = 1 + Z

(1)
i (aµ)g2 + Z

(2)
i (aµ)g4 + . . .

• We now show that these schemes always lead to uncancelled O(a) corrections
in some renormalized quantities.
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• At g = 0 (free Wilson-quark theory) we have that mcr = 0 and according
to the above renormalization conditions mr = m. This leads however to
uncancelled O(a) corrections in various quantities.

• For instance in the quark pole mass (i.e. the energy of a free quark with zero
momentum)

mp = 1
a
ln(1 + am) = mr −

1
2am

2
r + . . .

• It is possible to correct this deficit by replacing the above renormalization
condition for the mass with

mr = mq(1 − 1
2amq) +O(g2)

• However this turns out to be not sufficient because the renormalization
condition for gr still give rise to other uncancelled O(a) corrections. The
argumentation here is more difficult because the problem shows up only at
one loop in PT.

• An example where this happens is the running coupling gSF(µ) in the
Schrödinger Functional (SF) scheme. After one-loop perturbative computation
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ad using the definitions above for the renormalized coupling and mass one
can express gSF(µ) in terms of gr. In this expression there happen to be
uncancelled O(a) cut-off effects.

• The two naive mass-independent renormalization conitions above have to be
modified to be compatible with O(a) improvement.

• Improved mass-independent schemes. We recall that complete O(a)
improvement require renormalization of the bare parameters by factors of
the form 1 + bi(g

2)amq. We thus introduce

g̃2 = g2(1 + bgamq) m̃q = mq(1 + bmamq)

where the coefficients bg = bg(g
2) and bm = bm(g2) should be chosen such

to cancel any remaining O(a) cut-off effect.

• The general mass-independent renormalization scheme compatible with O(a)
improvement is now given by

g2
r = g̃2Zg(g̃

2, aµ) mr = m̃qZm(g̃2, aµ)
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• This means that in order to reach the continumm limit without having O(a)
effects in the physical quantities we have to scale the bare parameters g, mq

in a mq-dependent way. Instead, g̃, m̃q scale independently of mq. One can
prove that bg = bg(g

2) and bm = bm(g2) are independent of the particular
renormalization scheme chosen.

• It is straightforward to extend the discussion to the renormalization of the
local (multiplicatively renormalizable) composite fields φ. If φI is the improved
associated field defined in a previous section, the renormalized improved field
is

φr(x) = Zφ(g̃2, aµ)(1 + bφamq)φI(x)

where bφ = bφ(g2) plays a role analogous to that of bg, bm and is independent
of the renormalization condition chose to fix Zφ.

• In PT b = b(0) + b(1)g2 + . . . where b
(0)
g = 0, b

(0)
m = −1

2, b
(0)
A = b

(0)
P = 1.

• Renormalization conditions. A complete specification of a mass-independent
renorm. scheme requires the we fix the finite parts of the RCs Zg, Zm, Zφ by
imposing an appropriate set of renorm. conditions.
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• Different schemes are related by transformations of the form (up to O(a2))

g2
r = g2

rXg(g
2
r) m2

r = m2
rXm(g2

r) φ2
r = φ2

rXφ(g2
r)

• In PT minimal subtraction is technically attractive. It is defined by the

requirement that the expansion coefficients Z
(l)
g , Z

(l)
m , Z

(l)
φ are polynomials in

ln(aµ) with no constant term, to any order l ≥ 1 of PT.

• Non-perturbatively, mass-independent renorm. schemes are not as easy to
define because the correspondingly defines RCs have to be conmputable
through numerical simulations. Since they refer to the properties of the teory
at zero quark mass, one is then confronted with the problem of simulating
QCD with very light quarks.

• RI-MOM and SF are the only two possibilities known at present. RI-MOM is
simpler to implement numerically and to be matched to continuum schemes
(a necessary step to compute physical observables). SF however has the
advantage that is defined in finite volume, where the lattice size L is both the
inverse renormalization scale and also the infrared cut-off of the theory (thus
allowing to perform simulations at zero quark mass).
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Twisted Mass QCD

• Twisted mass QCD (tmQCD) for two-degenerate flavors is defined by adding
a twisted mass term to the QCD lagrangian (to be defined we will consider
the Wilson discretization)

StmQCD = a4
∑

x

ψ̄(x)
[

DW +m+ iµγ5τ
3
]

ψ(x)

where DW = γµ(∇∗µ + ∇µ) − ∇∗µ∇µ is the Wilson-Dirac operator and ∇µ,
∇∗µ are the forward and backward lattice covariant derivatives.

• By performing an axial rotation of ψ and redefining mr and µr

ψ → ψ′ = eiαγ5
τ3

2 ψ ψ̄ → ψ̄′ = ψ̄eiαγ5
τ3

2

m′r = mr cos(α) + µr sin(α) µ′r = µr cos(α) −mr sin(α)

one can show the following relation between renormalized correlation functions
of multi-local operators O(x1, . . . , xn) (with O′[ψ̄′, ψ′] ≡ O[ψ̄, ψ]) to hold

〈Or(x1, . . . , xn)〉(mr,µr) = 〈O′r(x1, . . . , xn)〉(m′r,µ′r)

• Standard QCD (µ′r = 0) is then recovered through a rotation tan(α) = µr

mr
.
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• tmQCD has a series of interesting properties:

1. the twisted mass is now an infrared cut-off and thus suitable to be simulated
at small quark masses.

2. operator mixing can be (at least in some cases) simplified.
3. moreover, when mr = 0 (i.e. α = π/2) one has automatic O(a)

improvement of parity-even correlators.

• however parity and isospin are broken explicitly by the twisted mass term.
They are violated only by lattice artifacts and thus recovered as a→ 0.

• notice that, to simulate tmQCD at a definite angle α, mcr should be known
together with the RCs Zm and Zµ. The last two are not needed only if we
set m = mcr (i.e. α = π/2).

• The question of the precision to which mcr has to be known than arises,
expecially because in general, with the (uninproved) Wilson action, mcr can
be determined only up to O(aΛ2

QCD) effects.

• We want to prove now the property of automatic O(a) improvement of
parity-even correlators at α = π/2 and discuss the choice of mcr.
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Automatic O(a) Improvement of tmQCD at α = π/2

• Discussion based on [Frezzotti, Martinelli, Papinutto, Rossi (2005) ]

• we re-write the tmQCD action choosing m = mcr (i.e. mr = 0 up to

O(aΛ2
QCD) effects) and rotating the basis ψ → exp{iαγ5

τ3

2 }ψ with α = π/2

StmQCD = a4
∑

x

ψ̄(x)
[

γµ(∇µ + ∇∗µ) + µ− iγ5τ
3
(

− a1
2∇
∗

µ∇µ +mcr

)]

ψ(x)

• this basis makes it evident that at α = π/2 the physical quark mass is
proportional to the twisted mass µ while the standard Wilson mass is set to
the value needed to tune mr = 0.

• The lattice artifacts are given by a rotated (now parity-odd) Wilson term
and thus are different (as also the renormalization properties) with repsect to
standard Wilson theory. This is the reason why tmQCD become interesting.

• The Symanzik local effective theory (LET) of tmQCD at α = π/2 is

StmQCD =

∫

d4y
[

L0(y) +
∞
∑

k=0

a2k+1L2k+1(y) +
∞
∑

k=1

a2kL2k(y)
]
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where, as before, L0 is the continuum QCD lagrangian

• The spurionic symmetry Dd × P × (µ → −µ) (P is the parity operator
and Dd acts on an operator of dimension d multiplying it by the phase
exp(iπd) = (−1)d and reflecting its space-time arguments) ⇒ L2k are parity
even and iso-singlets, L2k+1 are parity odd and twisted in iso-spin space. We
define

Lodd ≡

∞
∑

k=0

a2k+1L2k+1 , Leven ≡

∞
∑

k=1

a2kL2k .

• L1, the term of O(a) , can be shown to be a linear combination
L1 = δ1,swL1,sw + δ1,µL1,µ + δ1,eL1,e where

L1,sw = i
4ψ̄γ5τ3σµνFµνψ , L1,µ = µ2ψ̄iγ5τ3ψ , L1,e = Λ2

QCDψ̄iγ5τ3ψ ,

• L1,e is needed to describe the O(a) uncertainties in the estimation of mcr.

• Both L1,sw and L1,e are absent if the SW term is introduced with csw

determined non-perturbatively and mcr set to its O(a) improved value.
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• We consider the renormalized lattice correlation function GO(x) of the product
of local, multiplicativly renormalizable operators O(x) ≡

∏n
j=1Oj(xj) (where

as usual we keep the points x1, . . . , xn at non zero physical distances from
each other) which globally has vacuum quantum numbers.

• Let’s consider the Symanzik continuum LET of GO(x)

GO(x) = 〈[O(x) + ∆oddO(x) + ∆evenO(x)]e−
R

d4y[Lodd(y)+Leven(y)]〉

where Lodd = O(a) and Leven = O(a2) and

∆oddO =
∞
∑

k=0

a2k+1δ2k+1O , ∆evenO =
∞
∑

k=1

a2kδ2kO .

appear in the Symanzik expansion of the operator O and they are eventually
redefined in order to to regularize terms where a parity-odd (resp. parity-even)
product of Lodd and/or Leven insertions come in contact with some of the
points where the local factors of O are concentrated.

• the δpO’s can be viewed as the set of n-point operators of dimension dimO+p
necessary to improve O at order ap. It is easily proved that δ2kO has the
same parity of O while δ2k+1O has opposite parity.
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• Automatic O(a) improvement of the correlator of a globally parity-even
operator O(x) is easily proved from the parity properties of Lodd, Leven,
∆oddO and ∆evenO

GO(x) = 〈O(x)〉 + a2〈O2(x)〉 + a4〈O4(x)〉 + O(a6)

where, for instance

〈O2(x)〉 = 〈δ2O(x)〉 +

∫

d4y 〈δ1O(x)L1(y)〉 +

+

∫

d4y 〈O(x)L2(y)〉 + 1
2

∫

d4y

∫

d4z 〈O(x)L1(y)L1(z)〉

• In fact, we have proved not only the O(a) improvement of the theory but also
the fact the all the O(a2k+1) lattice artifacts are absent.

• Full analysis of cutoff effects beyond O(a) is extremely complicated. We are
interested here only in terms that are enhanced by 1/m2

π poles. In particular,
at a fixed order a2k, in the contributions with the highest multiplicity of pion
poles, which correspond to the leading chirally enhanced cutoff effects.
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• The following result can be proved: at order a2k the term with the highest
multiplicity of pion poles give contributions with a 2k-fold pion pole of the
form

[(

1
m2

π

)2k∣
∣

∣
〈Ω|Lodd|π

0(0)〉
∣

∣

∣

2k

M[O; (π0(0))2k]
]

where M[O; (π0(0))2k] denotes the (sum of the) 2k-particle matrix elements
of the operator O, with each external particle being a neutral pion at zero
three-momentum.

• The proof relies on the LSZ reduction formula and the observation that Lodd

has the continuum quantum numbers of the neutral pion.

• besides the leading “IR divergent” lattice artifacts, there are less important
contributions of the type a2k/(m2

π)h, with 2k > h ≥ 1.

• The presence of pion poles in the Symanzik expansion does not mean that the
latter diverges as µ → 0. These poles will in fact rearrange in order to give
the trigonometric factors in the observables related to an imprecise twisted
angle α = arctan( µr

mr
) (where mr = O(aΛ2

QCD) and µr ∝ m2
π) which is not

exactly equal to π/2.
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• It shows instead that more µ (and thus m2
π) becomes small more the tuning

of the twist angle to π/2 worsen and large O(a2/µ) lattice artifacts appear.

• So, as long as the inequality m2
π ∼ µ > aΛ2

QCD is not satisfied, these large
artifacts will possibly lead to a breakdown of the expansion.

• Leading chirally enhanced lattice artifacts are proportional to powers of
〈Ω|Lodd|π

0(0)〉 that is, at leading order in a, to powers of 〈Ω|L5|π
0(0)〉 ⇒

eliminated if we can set 〈Ω|L5|π
0(0)〉 = 0.

• First way: introduce the SW term with cSW non-perturbatively determined
and use an O(a) improved estimate of mcr ⇒ L1,sw and L1,e are absent and
L1 simply proportional to L1,µ ⇒ chirally enhanced terms become regular
(aµ2/m2

π)2k ≃ (aµ)2k.

• Comments: adding the SW term does not affect the results about automatic

O(a) improvement; the value of csw is precisely that for the untwisted Wilson
action.
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• Second way: fix mcr through

limµ→0〈Ω|Lodd(0)|π(0)〉 = 0 ⇒

δ1,eΛ
2
QCD〈Ω|ψ̄iγ5τ3ψ|π〉 = δ1,sw

i
4〈Ω|ψ̄γ5τ3σµνFµνψ|π〉 as µ→ 0

• It turns out that this tuning of mcr can be actually implemented by demanding
restoration of parity in the chiral limit (porposed also by Sharpe using ChPT)

lim
µ→0

a3
∑

x

〈V 2
0 (x)P 1(0)〉 = 0

• left-over chirally enhanced lattice artifacts turn out to be of the form
a2k/(m2

π)k−1, with both the methods proposed ⇒ to be satisfied in order to
avoid large cutoff effects becomes now

m2
π ∼ µ > a2Λ3

QCD

• It is possile to show that the chirally enhanced cut-off effects are reasonably
small even if one determines mcr(µ) for µ = µmin (the smallest mass at which
the simulation is performed) without actually taking the limit µ→ 0.
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Numerical Determination of mcr

• Determination of 1
κcr(µ) ∝ amcr(µ) and its extrapolation µ → 0. Results in

the quenched approximation from [Jansen, Papinutto, Shindler, Urbach, Wetzorke (2005) ]

• Comparison of numerical results for fπ with two choices of mcr.
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