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HQET: motivations

λπ = 1/mπ ≈ L

λB = 1/mB < a

light quarks are too light ⇒
extrapolate by matching with
chiral effective theory.

b-quark is too heavy (mba > 1)
⇒ need an effective theory for
the b quark: HQET (expansion
in inverse powers of the mass of
the heavy quark).

Three possible strategies:

1. Work in the static limit of HQET (mb →∞) and compute 1/mn
b corrections.

2. Combine relativistic simulations with mq ≈ mc and the static limit of HQET
to interpolate at mb.

3. Use finite size methods to relate relativistic observables computed on small
volume at physical mb to their value in infinite volume and eventually combine
with HQET.
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Non-perturbative HQET

heavy quark and anti-quark fields ψh, ψh̄ are now independent and satisfy

P+ψh = ψh , ψhP+ = ψh , P+ = 1
2(1 + γ0)

P−ψh = ψh , ψhP− = ψh , P− = 1
2(1− γ0)

HQET action on a lattice (we consider only the heavy quark fields for simplicity)

SHQET = a4 ∑

x {ψh(x)[D0 +mbare]ψh(x)

+ωspinψh(−σ ·B)ψh
︸ ︷︷ ︸

Ospin

+ωkinψh(−
1
2D

2)ψh
︸ ︷︷ ︸

Okin

+O(1/m2)}

also the composite fields have a 1/m expansion in the effective theory

AHQET
0 (x) = ZHQET

A ψl(x)γ0γ5ψh(x) + cHQET
A ψlγj

←−
D jψh + O(1/m2)

where ωkin = O(1/m) , ωspin = O(1/m) , cHQET
A = O(1/m)
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in the path integral: expand the action and the operators in 1/m

SHQET = a4
∑

x

{

Lstat(x) +
∞∑

ν=1

L(ν)(x)

}

O(x) = Ostat(x) +
∞∑

ν=1

δO(ν)(x)

where L(ν)(x) = O(1/mν) and δO(ν)(x) = O(1/mν) have to be considered in
the path integral only as operator insertions

〈O〉 = Z−1

∫

Dφ e−Srel−Sstat

{

Ostat + δO(1) + . . .
}

{

1− a4
∑

x

L(1)(x) + . . .

}

With this definition of the effective theory we have (at a given order in 1/m)

• renormalizability ≡ existence of the continuum limit

• continuum asymptotic expansion in 1/m

Note that these properties are not automatic for an effective field theory. ChPT
shares these properties; NRQCD does not. In the latter, the O(1/m) term is
kept in the leading order action used to compute the path-integral, leading to a
truly non-renormalizable theory.
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Difference between HQET and ChPT: as 1/m → 0 interactions are not turned
off ⇒ results in ChPT can be worked out analitically in PT while in HQET we
still need the lattice formulation to evaluate non-perturbatively the lowest order
theory (called the static approximation).

The terms in the effective theory are organized just by their mass dimension.
The expectation that the effective field theory has a continuum limit (i.e. is
non-perturbatively renormalizable) is thus the usual expectation that composite
operators mix only with operators of the same or lower dimension.

Same argumentation as for Symanzik’s discussion of cut-off effects of lattice filed
theories ⇒ in general the 1/m and the a-expansion are not independent but
have to be considered as a single expansion in term of the dimension of the local
fields.

If we start with a set of operators indentified by the formal continuum 1/m
expansion, these operators will mix under renormalization with all the operators
of the same or lower dimension which are allowd by the lattice symmetries and
not only those allowed by the continuum symmetries.

One thus has to start from the beginning with the complete basis of operators
allowed by the lattice symmetries. In other word the power counting is a =
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O(1/m). In particular, in order to go to O(1/m) Srel has to be O(a) improved.

The terms that have to be taken into account are restricted by HQET lattice
symmetries: 3-dim cubic group and, at lowest order in 1/m, heavy quark spin
symmetry and the local conservation of the heavy quark number (this simplify
O(a) improvement).

As in the case of Symanzik improvement, we are interested only in on-shell
quantities and we can therefore keep all the fields at non-zero physical distance
⇒ we can use the equation of motions derived from Srel + Sstat to reduce the
set of operators to be considered.

Renormalisation of HQET has to be done non-perturbatively: hard cut-off (1/a)

⇒ e.g. OR
d=5 = ZO

"

O
d=5 +

X

k

ckOk

d=4

#

ck =
c
(0)
k + c

(1)
k g2 + . . .

a

if ck computed at a finite order l in g2, there is no continuum limit!

∆ck ∼
g2(l+1)

a
∼

1

a [ln(aΛ)]l+1

a→0
−→ ∞

perturbative remainder of
some parameters computed
to l-loops with l arbitrary

6



Matching between QCD and HQET

We expect, at a given order n in HQET, the following relation between QCD
and HQET observables

ΦQCD(M) = ΦHQET(M) +O
(

1
Mn+1

)

where M is the RGI heavy quark mass.

we want to fix the bare couplings of HQET such that this equivalence between
HQET and QCD is true at a order n in the 1/m-expansion. First of all we have
to fix all the parameters of QCD by requiring a set of observables (e.g. hadron
masses) to agree with experiment.

Next, we determine the bare couplings of HQET at order n
(mbare, ωkin, ωspin, c

HQET
A , ZHQET

A , . . . ) by imposing

ΦQCD
k (M) = ΦHQET

k (M) , k = 1, 2, . . . , NHQET
n

The HQET results are then correct up to O(1/mn+1) = O(M−(n+1)aMk) with
k = 0, . . . , n+ 1. For instance, working at order 1/m will give 1/M0 terms with
O(a2) errors and 1/M terms with O(a) errors.
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In principle each ΦHQET
k (M) could be determined from a physical, experimentally

accessible observable. However this would reduce the predictive power of the
theory, since it contains more parameters of QCD (increasing the order n of
the 1/m-expansion we then would need to use more and more experimental
observables.

To preserve the predictability of the theory, we may instead use quantities
ΦQCD

k (M) comuted in the continuum limit of lattice QCD. This require to treat
the heavy quark as a relativistic particle on the lattice, which was exactly the
problem in the motivations for using HQET! we will explain in a moment how
this apparent contraddiction can be solved.

For a 323 × 64 lattice with a physical volume of 2 fm (above which finite
volume effects are considered to be negligible) the corresponding lattice spasing
is a ≈ 0.06 fm and the subtracted bare b-quark mass is amq ≈ 1 ⇒ QCD lattice
artifacts are expected to be very large.

Way out: consider observables Φk defined in finite (small) volume and use the
fact that the parameters of the QCD and HQET lagrangians are independent of
the volume.
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Non-perturbative matching between QCD and HQET

The Φk are defined on L = L1≪ 2 fm where L1 ≈ 0.4 fm. We can thus simulate
very fine a’s where mba ≪ 1 and 1/(mbL1) ≪ 1 (the last condition is needed
to have a well behaved 1/m-expansion in finite volume and small size of the
residual O(1/mn+1) corrections).

HQET-parameters from QCD observables in small volume at small lattice spacing
(using the Schrödinger Functional)

Physical observables (e.g. BBs,
FBs) need a large volume,
such that the B-meson fits
comfortably: L ≈ 4L1 ≈ 1.6 fm

Connection achieved recursively
with the step-scaling function
method:

ΦHQET(L1)

p p p p

p p p p

p p p p

p p p p

-








�

HQET in ≥ 4L1
p p p p

p p p p

p p p p

p p p p

-

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

p p p p p p p

ΦHQET
k (2L) = Fk

“n

ΦHQET
j (L), j = 1, . . . , NHQET

n

o”

fully non-perturbative formulation of HQET (including matching) [Heitger & Sommer, 2004 ]

continuum limit can be taken in all steps
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Example: Mb static (at order 1/m0)
[Heitger & Sommer, 2004; M. Della Morte, N. Garron, M. Papinutto and R. Sommer, 2005-2006 ]

finite volume B-meson “mass”: fA ∼

0

LxLxL

x

x0

0

= T

=

Γ = −∂0 log[fA(x0)]x0=L/2,T=L

matching condition in finite volume:

L1Γ(L1,Mb) ≡ ΦQCD
2 (L1,Mb) = ΦHQET(L1,mbare) ≡ L1 [Γstat(L1) +mbare]

∞ volume equation (mbare eliminated and Estat = limL→∞ Γstat(L)):

L1mB = L1Estat + L1mbare

= L1Estat − L1Γ
stat(L1) + ΦQCD

2 (L1,Mb)

= L1Estat − L1Γ
stat(2L1) + L1Γ

stat(2L1)− L1Γ
stat(L1)

︸ ︷︷ ︸

=
1
2σm(ḡ2(L1))

+ΦQCD
2 (L1,Mb)

L1mB︸ ︷︷ ︸
exp.

= L1[Estat − Γstat(2L1)]
︸ ︷︷ ︸

a→0 in HQET

+ 1
2σm(u1)
︸ ︷︷ ︸

a→0 in HQET

+ ΦQCD
2 (L1,Mb)

︸ ︷︷ ︸
a→0 for MbL1 ≫ 1

In Estat and Γstat(2L1) (and analogously in Γstat(2L1) and Γstat(L1)) there are
1/a power divergences that cancel in the difference if the same a is chosen.
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experiment Lattice with amq ≪ 1

mB = 5.4 GeV Γ(L1, M)

? ?

Γstat(2L1) Γstat(L1)�

σm(u1)

L2 = 2L1

ui = ḡ2(Li)

0 0.0005 0.001 0.0015 0.002 0.0025

(a/L)
 2

8

8.5

9

9.5

10

 Φ
2

0 0,005 0,01 0,015 0,02

(a/L)
 2

0

0,1

0,2

0,3

0,4

0,5

 Σ
m

HYP 2
HYP 1
0.1 % uncertainty on M

b

σm = lim
a/L→0

Σm(a/L)

Set up: light quark mass set to zero on L1; 3 values of the RGI heavy quark
mass around Mb; light quark mass set to the strange value on 4L1.
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Mb static

L1mB︸ ︷︷ ︸
experiment

−L1[Estat − Γstat(2L1)]−
1
2σm(ḡ2(L1)) = ΦQCD

2 (L1,Mb)

Solve the above equation for Mb (the RGI b-quark mass).

At this order, Mb is affected by O( 1
L2

1Mb
), O(

ΛQCD

L1Mb
),O(

Λ2
QCD

Mb
) errors. For our

choice L1 = 0.4 fm they turn out to be of the same order of magnitude.

10 11 12 13 14
z

12

13

14

15

16

17

18

19

L
2
 m

B

exp
 - L

2
 (E

stat
-Γ

1

stat
(L

1
)) - σ

m

2 Φ
2
(L

1
, M)

L
1
M

b

stat

M stat
b = 6771± 99 MeV

and obtain the slope

S =
1

L1

∂ΦQCD
2 (L1,M)

∂M

= 0.61(5)

error dominated by that on renorm.
constant of the quark mass.
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Mb at order 1/m [M. Della Morte, N. Garron, M. Papinutto and R. Sommer, 2005-2006 ]

coefficients in the action:

O(1) mbare

O(1/m) ωkin of ψh(−
1
2D

2)ψh

O(1/m) ωspin of ψh(−σ ·B)ψh

ωspin cancels in spin averaged quantities.

∞ volume mB = Estat + mbare + ωkinE
kin

Matching 1 ΓQCD(L, Mb) = Γstat(L) + mbare + ωkinΓ
kin(L) =

Φ
HQET
2

L

Matching 2 ΦQCD
1 (L, Mb) = ωkinR

kin
1 (L) = ΦHQET

1

mB =
[
Estat − Γstat(L)

]
+ ΓQCD(L,Mb) +

[
Φ

QCD
1 (L,Mb)

Rkin
1 (L)

(Ekin − Γkin(L))

]

(mbare, ωkin eliminated). Set L = L1 and insert 0 = Γstat(2L1) − Γstat(2L1)
and 0 = Γkin(2L1)−Γkin(2L1). The continuum limit can be taken separately in
every part of the formula connecting L and 2L (in which the power divergences
cancel because the same lattice spacing can be chosen). One obtain the SSF:

Φ1(2L) = σkin
1 (u)Φ1(L), Φ2(2L) = 2Φ2(L) + σm(u) + σkin

2 (u)Φ1(L)
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⇒ mB = mstat
B +m

(1a)
B +m

(1b)
B , mexp

B = mB(M stat
b +M

(1a)
b +M

(1b)
b )

Most difficult steps of the computation:

m
(1a)
B (M) = 1

2L1
σkin

2 (u1) Φ1(L1,M) m
(1b)
B (M) =

(Ekin
−Γkin

1 (2L1))

Rkin
1

Φ1(2L1,M)

0 0,05 0,1 0,15 0,2

a/L
0

2

4

6

8

10

Σ
2

kin

HYP 2
HYP 1
0.1 % uncertainty on M

b

0 0,05 0,1 0,15
a/L

2

-10

0

10

20

30

L
2
 (E

kin
 - Γkin

 ) / R
1

kin

0.1% uncertainty on M
b

stat

In σkin
2 (u1) and (Ekin − Γkin

1 (2L1)) cancellation of 1/a2 power divergences
(extrapolation linear in a)
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Results at order 1/m

then the 1/m correction to M stat
b (M

(1)
b = M

(1a)
b +M

(1b)
b ) is

M
(1a)
b = −

σkin
2 (ḡ2(L1))Φ1(L1,M

stat
b )

S 2L1
= −30(15) MeV

M
(1b)
b = −

(Ekin
−Γkin

1 (2L1))Φ1(2L1,M)

SRkin
1

= −5(33) MeV

and in the MS scheme mb(mb) = mstat
b +m

(1)
b

mstat
b = 4.35(6) GeV , m

(1)
b = −0.02(2)GeV .

which agrees with PDG, despite quenched approximation.

At this order, Mb is affected by O( 1
L3

1M2
b
), O(

ΛQCD

L2
1M2

b
), O(

Λ2
QCD

L1M2
b
), O(

Λ3
QCD

M2
b

) errors.

For L1 = 0.4 fm they are of the same order of magnitude and very small.

This has been check by using different matching conditions: fA needs O(1/m)-
correction to Astat

0 ⇒ more step scaling functions ⇒ final result agrees up to
(small) O(1/m2)-corrections which turn out to be exactly of O(Λ3

QCD/M
2
b)
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Non-perturbative renormalisation of HQET operators
[Palombi,Papinutto,Pena,Wittig, 2005-2007 + Dimopoulos,Herdoiza,Palombi,Papinutto,Pena,Vladikas,Wittig 2007 ]

∆B = 2 oscillations: 〈B̄0
q |O

∆B=2
LL |B0

q〉 = 8
3BBqf

2
Bq
m2

Bq
relevant for UT analysis

In HQET at leading order (static approximation) one has

〈B̄0
q |O

∆B=2
LL (mb)|B

0
q〉 = C1(mb, µ) 〈B̄0

q |Q̂
+
1 (µ)|B0

q〉HQET

+ C2(mb, µ) 〈B̄0
q |Q̂

+
2 (µ)|B0

q〉HQET + O (1/mb)

HQET four-fermion operator basis:

O±
Γ1Γ2

=
1

2

[
(ψ̄hΓ1ψ1)(ψ̄h̄Γ2ψ2)± (ψ̄hΓ1ψ2)(ψ̄h̄Γ2ψ1)

]

(Q+
1 , Q

+
2 , Q

+
3 , Q

+
4 ) = (O+

VV+AA,O
+
SS+PP,O

+
VV−AA,O

+
SS−PP)

(Q+
1 ,Q

+
2 ,Q

+
3 ,Q

+
4 ) = (O+

VA+AV,O
+
SP+PS,O

+
VA−AV,O

+
SP−PS)

Heavy quark spin symmetry

ψh → exp(−iφkǫklmσlm)ψh, ψ̄h → ψ̄h exp(iφkǫklmσlm) ,

+ H(3) spatial rotations + time reversal ⇒ constrains on the renormalization
matrix (at the non-perturbative level).
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change of basis ( ~Q, ~Q)→ ( ~Q′, ~Q′) (with Q′
1 ≡ Q1 and Q′

1 ≡ Q1) ⇒ parity-odd
operators renormalise multiplicatively

0

B

B

B

@

Q̂
′
1

Q̂
′
2

Q̂
′
4

Q̂
′
5

1

C

C

C

A

=

0

B

B

@

Z1 0 0 0

0 Z2 0 0

0 0 Z4 0

0 0 0 Z5

1

C

C

A

0

B

B

@

Q
′
1

Q
′
2

Q
′
4

Q
′
5

1

C

C

A

⇒ use HQET for the b quark and twisted mass QCD for the light quarks.
At α = π/2 one can show that in the twisted basis, the parity-even operator
of interests corresponds to the (chirally rotated) parity-odd one. For the
renormalized matrix elements it holds:

〈B̄0
q |Q̂

′
+

k(µ)|B0
q〉HQET = Z ′

k(g, aµ)〈B̄0
q |Q

′+

k(a)|B0
q〉

α=π/2
tmQCD

Using tmQCD, ∆F = 2 and in particular ∆B = 2 matrix elements can thus be
computed with multiplicative renormalization.

We have computed the non-perturbative RCs Z ′
k(g, aµ) of the static HQET

four-fermion operators in the SF scheme with Nf = 0 and Nf = 2 dynamical
light quarks.
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The computation requires the following ingredients:

1. perturbative calculation of the NLO anomalous dimension for the complete
basis of static four-fermion operators in the SF scheme.

2. the non-perturbative running (step-scaling function σk(u)) in the continuum
(in the SF scheme) for a wide range of couplings, i.e. on a wide range of
scales. The SF allowed us to start at a µhad ≈ 270 MeV and go up to
µpt ≈ 70GeV.

σk(u) = Uk(µ, µ/2) = ĉ k(µ/2)
ĉ k(µ) = lima→0

Zk(g0,aµ/2)
Zk(g0,aµ)

∣
∣
∣

m=0

u≡ḡ2(µ)

where ĉ k(µ) =
[ḡ2(µ)

4π

]−γ
(0)
k

/2b0 exp
{
−

∫ ḡ(µ)

0
dg

(γk(g)
β(g) −

γ
(0)
k

b0g

)}

3. the matching factor Zk(g0, aµhad) at the low hadronic scale µhad.

4. the RGI renormalization constant

Ẑk,RGI(g0) = ĉk(µhad)Zk(g0, aµhad) = ĉ k(µpt)Uk(µpt, µhad)Zk(g0, aµhad)

with ĉ k(µpt) perturbative at NLO while Uk(µpt, µhad) non-perturbative.

Statistical + sytematic uncertainty ≤ 2% for Nf = 0 and ≤ 5% for Nf = 2.
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ĉk(µ) ≡ Uk(∞, µ)
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