
Lattice QCD and 
Non-Perturbative  
Renormalization

GDR-Workshop 

A. Vladikas
INFN - TOR VERGATA 

LPHAA
Collaboration

Saclay 
3-4 March 2009



Lecture 1:
the RI/MOM scheme
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Operator 
Renormalization



Renormalization and improvement

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g0
2(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased
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Renormalization and improvement

• lattice renormalization can be done either in PT or non-perturbatively (NP)

• lattice PT is tedious and badly convergent; at say LO, it introduces large O(g0
4) errors in 

ZQ

• NP methods introduce O(a) discretization errors is ZQ ; as also the bare WME 
has O(a) effects, this is preferable to PT

• better still: attempt to “help” continuum extrapolation by reducing all 
discretization errors to O(a2) [Symanzik improvement; see later]
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Renormalization and improvement

• lattice renormalization can be done either in PT or non-perturbatively (NP)

• lattice PT is badly converging

• example 1: MILC collaboration found that the strange quark mass was raised by 14% once 
its renormalization constant, known in 1-loop PT, was calculated at 2-loops

• example 2: Göckeler et al. found that the strange quark mass was raised by 24% once its 
renormalization constant, known in 1-loop PT, was calculated by a NP method
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Renormalization and improvement

• lattice renormalization can be done either in PT or non-perturbatively (NP)

• lattice PT is badly converging 

• two NP renormalization schemes have been devised for these renormalizations

• RI/MOM scheme

• Schrödinger Functional (SF) scheme

< f | QR(µ) |i > = lim
a→0

[

ZQ(aµ, g2

0) < f | Q(g2

0) |i > + O(a)
]

• the lattice formalism is a bare QFT

• computation results are bare WMEs at fixed UV cutoff 1/a ( i.e. fixed g0
2(a) )

• must renormalize them in order to get continuum physics

• UV cutoff is present at all stages of a computation and it is gradually increased

 G.Martinelli et al. Nucl.Phys.B445(1995)81

 M.Lüscher et al. Nucl.Phys.B478(1996)365



The RI/MOM 
Renormalization Scheme

 G.Martinelli, C. Pittori, C. Sachrajda, M.Testa, A.V.,  Nucl.Phys.B445 (1995) 81



Generalities

bare correlation 
functions

renormalization 
condition

GQ(x1, · · · , xn) ≡ < φ(x1) · · ·Q(0) · · ·φ(xn) >

G̃Q(p) = F .T . [GQ(x)]

Zn
φ

(µ

Λ

)
ZQ

(µ

Λ

)
G̃Q(p)

∣∣∣∣∣
p2=µ2

= G̃(0)
Q = const.

• the scheme has a dual name: MOM stands for momentum subtraction. This is 
because  the scheme mimics quite faithfully what is often done in continuum calculations 

• the renormalization condition is imposed in momentum space. 

• it consists in requiring that a given renormalized correlation function with, say, an operator 
insertion, is set, at fixed momenta μ, to its tree level value (a constant). This determines the 
operator renormalization constant, up to fundamental field renormalizations.

• the renormalization condition is independent of the regularization scheme; thus we may 
adopt the lattice for the (non-perturbative) calculation of the bare correlation 
function in coordinate space, followed by its Fourier transform (a “discrete procedure” for 
a finite lattice) into momentum space.

• the scheme is regularization independent (RI), as opposed to the early days’ lattice 
perturbation theory calculations, which relied on some continuum MS scheme.



Basic definitions

• consider a multiplicatively renormalizable operator

• NB: these operators are flavour non-singlets; e.g.

Oa
Γ(x) = ψ̄(x)Γ

λa

2
ψ(x)

• examples: scalar/pseudoscalar densities etc.

• NB: we also consider vector and axial currents, which have finite normalizations

S(x) = ū(x)d(x)
P (x) = s̄(x)γ5d(x)

• we also need the quark propagator in momentum space (the integral is really a sum!!!)

S(x) = ψ̄(x)
λa

2
ψ(x) P (x) = ψ̄(x)γ5

λa

2
ψ(x)

Vµ(x) = ψ̄(x)γµ
λa

2
ψ(x) Aµ(x) = ψ̄(x)γµγ5

λa

2
ψ(x)

S(x1 − x2) = 〈 ψ(x1) ψ̄(x2) 〉

S(p) =
∫

dx exp(−ipx) S(x)

• NB: easily computable on the lattice

• gauge fixing neccessary

• opt for Landau gauge



Basic definitions

• the correlation function of interest, in coordinate space, is obtained by inserting the quark 
bilinear operator in 2-point fermionic Green function (the quark propagator) 

• Fourier tranform it to obtain the 
correlation function in momentum space 

• amputate the momentum space correlation function

• NB: operator insertion has zero momentum transfer (optional)

• NB: all manipulations are in the Landau gauge 

• the amputated correlation function is a matrix in Dirac-colour 
space; its tree level value is Γ⊗l

x2x1

GQ(p) =
∫

dx1dx2 exp(−ip[x1 − x2]) GQ(x1, x2)

QΓ(0)

QΓ(0)

p p

GQ(x1, x2) = 〈ψ(x1) QΓ(0) ψ̄(x2)〉

ΛQ(p) = S−1(p) GQ(p) S−1(p) QΓ(0)

= =



Basic definitions

• it is convenient to impose the renormalization condition on a function of momenta (rather 
than on a Dirac-colour matrix)

• we thus “project” the amputated correlation Dirac-colour Green function by suitable traces

• this consists in defining the projected-amputated Green function 

• the trace is over colour and spin indices

• the trace over colours is trivial

• the trace over spin is conditioned by the choice of the Dirac 
projectors PQ, chosen so that the tree-level value of ΓQ is unity 
(recall that the tree level value of is ΓQ  is Γ⊗l ).

QΓ(0)

= =

ΓQ(p) ≡ 1
12

Tr
[

PQ ΛQ(p)
]

PS = I PP = γ5

PV =
1
4
γµ PA =

1
4
γ5γµ

• NB: at tree level ΓQ = 1



RI/MOM renormalization scheme

• so far we only defined a convenient projected-amputated correlation function ΓQ(p), in terms 
of the bilinear operator QΓ and the fermion fields ψ

• this bare quantity, regularized by the lattice, is computed non-perturbatively (i.e. numerically, 
at fixed UV cutoff)

• the renormalized ΓQ(p) is formally given by:

• RI/MOM renormalization scheme: impose the following renormalization condition on ΓQ(p)

quark field renormalization operator renormalization

[
ΓQ(p)

]

R
= lim

a→0

[
Z−1

ψ (aµ) ZQ(aµ) ΓQ(p)
]

• i.e. the renormalized amputated-projected correlation function [ΓQ(p)]R , at scale μ, is set to 
its tree level vlue. From it the product ZQ /Zψ is determined

[
ΓQ(p2)

]

R

∣∣∣∣∣
p2=µ2

= Z−1
ψ (aµ)ZQ(aµ)ΓQ(µ) = 1



RI/MOM renormalization scheme

• in practice the bare ΓQ(p) is computed at fixed UV cutoff (lattice spacing) for several quark 
masses m and renormalization scales μ 

• being a mass-indeendent scheme, the chiral extrapolation m → 0 must be performed

• we must disentangle ZQ from Zψ; conceptually the simplest way is by using the lattice 
conserved vector current VC, which has ZV

C = 1

• for this current, the RI/MOM condition gives a way to compute non-perturbatively Zψ

• in practice this method is not applied because the conserved current is point split and 
somewhat intricate and costly to implement (in reality these are superable problems...)

• instead of VC, one can use ZV V  = VC, with ZV taken from Ward identities

• people prefer to compute Zψ from the renormalization of the quark propagator

[
ΓQ(p2)

]

R

∣∣∣∣∣
p2=µ2

= Z−1
ψ (aµ)ZQ(aµ)ΓQ(µ) = 1

[
ΓV C (p2)

]

R

∣∣∣∣∣
p2=µ2

= Z−1
ψ (aµ)ΓV C (µ) = 1



RI/MOM quark propagator renormalization

• the RI/MOM condition that fixes Zψ is given by

• the quark propagator is renormalized by the quark field renormalization parameters 
[
S(p)

]
R

= Zψ(aµ) S(p)

i

12
Tr

[/p S−1
R

p2

]

p2=µ2
= Z−1

ψ

i

12
Tr

[/p S−1

p2

]

p2=µ2
= 1

• in practice the scheme is straightforward to apply: the non-perturbative computation of 
the quark propagator at a given lattice spacing and quark mass, on a gauge configuration 
ensemble, in the Landau gauge, is standard

• all other correlation functions we need, are constructed in terms of these propagators and 
include non-perturbative effects

• the scheme is defined in infinite volume; in practice we simulate at large volumes

• the results are the quantities ZQ(aμ) and Zψ(aμ), computed for a large discrete set of 
scales aμ

• recall that we must always extrapolate them to the chiral limit



RI/MOM window of applicability

• the range of renormalization scales, for which RI/MOM is applicable, is not unlimited

• there is a window in the range of aμ, for which the scheme works well

ΛQCD << µ << π/a

this bound satisfies the 
requirement of small 
cutoff effects O(aμ)

this bound makes possible the 
matching with a perturbative 
scheme (e.g. MS) or with  some 
Wilson coefficients of the OPE, 
calculated at large, perturbative 
scales aμ

this bound also potects the 
results from Goldstone pole 
contaminations (see below)

• results are therefore expected to be “unreliable” at very small and very large aμ values

• in between we should be seing a more or less smooth signal

• it is better to combine the non-perturbative ZQ(aμ) with the perturbative evolution 
function in order to compute ZQ

RGI and check its independence from the scale aμ



RI/MOM window of applicability

• the perturbative evolution function in the RI/MOM secheme is known to N3LO for ZS and 
ZP and to N2LO for ZT

scale evolution function, 
known in PT

RI/MOM renormalization 
parameter, computed non-
perturbatively

R G I r e n o r m a l i z a t i o n 
parameter

ZRGI
Q =

[
ḡ2(µ)
4π

]−γ(0)
O /(2b0)

exp

{
−

∫ ḡ(µ)

0
dg

(
γO(g)
β(g)

− γ(0)
O

b0g

)}
ZQ(aµ)

 K.G.Chetyrkin, A. Retey, Nucl.Phys.B583 (2000) 3

• the gauge coupling needed in the above is taken from PT in MS



RI/MOM window of applicability

• this is a quenched computation

• it is also O(a)-improved (Clover 
action etc.)

 D.Becirevic et al., JHEP08 (2004) 022

• ZVRGI, ZARGI and ZPRGI/ZSRGI are scale independent as they should be

• the plateaux for ZSRGI, ZPRGI, and ZTRGI are reasonable; i.e. the perturbative subtraction of 
the scale dependence of the renormalization parameters works well

• this implies that PT appears to capture well the RG running (N.B. this statement is not 
valid in general for all RI/MOM renormalization parameters!)

• so in these plots the relevance of the non-perturbative calculation is in establishing the 
plateaux heights 



RI/MOM window of applicability

• this is a quenched computation

• it is also O(a)-improved (Clover 
action etc.)

 D.Becirevic et al., JHEP08 (2004) 022

• the ZSRGI plateau is rather 
poor, compared to others

• s u b t r a c t t h e l e a d i n g 
p e r t r u b a t i v e O ( g 2 a 2 ) 
discretization effects

• it is not guaranteed that 
the plateaux will improve

• 5% change for ZSRGI, 0% change for ZPRGI, 3% change for ZTRGI, 1% change for ZV,ARGI



RI/MOM compatibility with Ward identities

• scale independent current normalization constants (ZV, ZA) and scale independent ratios of 
operator renormalization constants (ZS/ZP) are fixed by Ward identities (WIs)

• they can also be determined through the RI/MOM condition

• are these two determinations compatible (up to discretization effects)?

• consider bilinear operators Vμ, Aμ, S, P made of two flavours ψ1 and ψ2 , with quark masses 
m1 and m2;  i.e. bilinear operators Q are defined to be

• WIs are now calculated for the operator insertions of the form

• in terms of such correlation functions, the vector WI (PCVC) is x2x1

QΓ(x)

QΓ = ψ̄1 Γ ψ2

ZV

∑

µ

∇µ
xGµ

V (x1 − x, x2 − x;m1, m2) = −(m2 −m1) GS (x1 − x, x2 − x;m1, m2)

+ δ(x2 − x)S (x1 − x2;m1) − δ(x1 − x)S (x1 − x2;m2)

GQ(x1 − x, x2 − x) = 〈ψ1(x1) QΓ(x) ψ̄2(x2)〉 1 2



RI/MOM compatibility with Ward identities

x2x1

∂μVμ(x)

ZV

∑

µ

∇µ
xGµ

V (x1 − x, x2 − x;m1, m2) = −(m2 −m1) GS (x1 − x, x2 − x;m1, m2)

+ δ(x2 − x)S (x1 − x2;m1) − δ(x1 − x)S (x1 − x2;m2)

∂µVµ = (m1 −m2) S + · · ·

• identification with formal PCVC

1 2 =
x2x1

S(x)

1 2(m2 - m1) + ...

+ -
x1 x2

x x

x1 x2



RI/MOM compatibility with Ward identities

• consider mass-degenerate case; this kills the correlation with the scalar operator

• Fourier transform above WI with distinct 4-momenta at each external leg (unlike RI/MOM)

• amputate (like in RI/MOM)

ZV

∑

µ

∇µ
xGµ

V (x1 − x, x2 − x;m1, m2) = −(m2 −m1) GS (x1 − x, x2 − x;m1, m2)

+ δ(x2 − x)S (x1 − x2;m1) − δ(x1 − x)S (x1 − x2;m2)

p+q/2 p-q/2

qZV

∑

µ

iqµΛµ
V

(
p +

q

2
, p− q

2

)
= +S−1

(
p +

q

2

)
− S−1

(
p− q

2

)

γμ

ZV Λρ
V (p, p) + ZV qµ

∂

∂qρ
Λµ

V

(
p +

q

2
, p− q

2

) ∣∣∣∣
q=0

= −i
∂

∂pρ
S−1

(
p
)

• differentiate w.r.t. momentum transfer qμ ; take limit qμ → 0

vanishes in the limit qμ → 0



RI/MOM compatibility with Ward identities

ZV Λρ
V (p, p) + ZV qµ

∂

∂qρ
Λµ

V

(
p +

q

2
, p− q

2

) ∣∣∣∣
q=0

= −i
∂

∂pρ
S−1

(
p
)

vanishes in the limit qμ → 0

• project: multiply by γρ ; take traces ZV ΓV (p) = − i

48
Tr

[
γρ

∂

∂pρ
S−1

(
p
)]

• the RHS is Zψ ; thus the PCVC has been shown equivalent to the RI/MOM condition!



RI/MOM compatibility with Ward identities

• performing similar steps (in masselss case) we find the axial WI (PCAC):

ZV Λρ
V (p, p) + ZV qµ

∂

∂qρ
Λµ

V

(
p +

q

2
, p− q

2

) ∣∣∣∣
q=0

= −i
∂

∂pρ
S−1

(
p
)

• does NOT vanish in the limit qμ → 0, due to the presence of a massless Goldstone 
boson. This term is needed in order to saturate the PCAC correctly.

• it DOES vanish in the limit p2 → ∞, as shown by an OPE argument

• thus in the limit p2 → ∞, we recover (just like vector case) that the RI/MOM determination 
of ZA is compatible with PCAC

• we must still address the issue of whether our momenta are high enough

• recall that a vector WI (PCVC) is:

ZAΛA (p, p) + ZAqµ
∂

∂qρ
ΛA

(
p +

q

2
, p− q

2

) ∣∣∣∣∣
q=0

= − i

2

[
γ5

∂

∂pρ
S−1(p)− ∂

∂pρ
S−1(p)γ5

]

 G.Martinelli, C. Pittori, C. Sachrajda, M.Testa, A.V.,  Nucl.Phys.B445 (1995) 81



RI/MOM compatibility with Ward identities

• this time integrate over all space (for massive quarks!!!) 

• integration kills the vector current term (LHS), as it is a surface term

• how about the ZS/ZP  ratio? It is also fixed by WIs; start again with the PCVC relation

ZV

∑

µ

∇µ
xGµ

V (x1 − x, x2 − x;m1, m2) = −(m2 −m1) GS (x1 − x, x2 − x;m1, m2)

+ δ(x2 − x)S (x1 − x2;m1) − δ(x1 − x)S (x1 − x2;m2)

(m2 −m1)
∫

d4x GS (x1 − x, x2 − x) = S (x1 − x2;m1)− S (x1 − x2;m2)

• in the mass degenerate limit

• Fourier transform, amputate, project...

(m2 −m1)ΓS (p;m1, m2) = − 1
12

Tr
[
S−1 (p;m1)

]
+

1
12

Tr
[
S−1 (p;m2)

]

ΓS (p) =
1
12

Tr

[
∂S−1 (p;m2)

∂m

]



RI/MOM compatibility with Ward identities

• in the mass degenerate limit

• analogously for the PCAC case we find

(m2 −m1)ΓS (p;m1, m2) = − 1
12

Tr
[
S−1 (p;m1)

]
+

1
12

Tr
[
S−1 (p;m2)

]

• in the mass degenerate limit, differentiating w.r.t. the PCAC mass

(m1 + m2)PCAC ΓP (p) =
1
12

Tr
[
S−1 (p;m1)

]
+

1
12

Tr
[
S−1 (p;m2)

]

• recap: for the PCVC case we find

ΓS (p) =
1
12

Tr

[
∂S−1 (p;m)

∂m

]

ΓP (p) + mPCAC
∂ΓP

∂mPCAC
=

1
12

Tr

[
∂S−1 (p;mPCAC)

∂mPCAC

]



RI/MOM compatibility with Ward identities

• we express these WIs in terms of renormalized quantities:

• vector WI:

• all this combines to a WI 
determination of the ratio ZS/ZP

• the two determinations differ by a factor which becomes negligible in the limit p2 → ∞ (see 
below)

• the absence of this factor from the RI/MOM determination consists of a Goldstone pole 
contamination

• axial WI:

PR = ZP P SR = ZS S mR = Z−1
S m = Z−1

P mPCAC

m = m0 −mcr

ZP

ZS
=

ΓS
ΓP

1 + m
ΓP

∂ΓP
∂m

• the RI/MOM determination is
ZP

ZS
=

ΓS

ΓP

ΓS (p) =
1
12

Tr

[
∂S−1 (p;m)

∂m

]

ΓP (p) + mPCAC
∂ΓP

∂mPCAC
=

1
12

Tr

[
∂S−1 (p;mPCAC)

∂mPCAC

]



RI/MOM and Goldstone pole contamination

• plug this in the WI relations between ΓS (and ΓP) and the quark propagator

• the Goldstone pole contribution is seen more explicitly in the non-perturbative part of the 
quark propagator (obtained from an OPE argument)

S−1(p;m) = i/p Σ1(p2;m;µ2) + m Σ2(p
2;m;µ2) + Σ3(p;m;µ2)

perturbative form factors non-perturbative form factor

Σ3 = K g2 < ψ̄ψ >

p2
+ O(p−4)

• vector WI:

ΓS (p) =
1
12

Tr

[
∂S−1 (p;m2)

∂m

]
• axial WI:

P. Pasqual & E. deRafael Z.Phys.C12 (1982) 127

ΓP (p) + mPCAC
∂ΓP

∂mPCAC
=

1
12

Tr

[
∂S−1 (p;mPCAC)

∂mPCAC

]



• to LO in 1/p,  ΓS is free of non-perturbative contributions, while is ΓP not

• the ΓP non perturbative contribution diverges in the chiral limit (divergence is of IR type) !!!

•  the ΓP non perturbative contribution vanishes at large momenta

• the Goldstone pole contribution is seen more explicitly in the non-perturbative part of the 
quark propagator

perturbative contribution
NLO non-perturbative contribution

ΓS(p;m1, m2) = Σ2(p;m) + m
∂Σ2(p;m)

∂m
+O

(
p−4)

ΓP (p;m) =
ZS

ZP
Σ2 (ap, am) − ZψZS

m
K ′g2

0
〈ψ̄ψ〉s

p2

LO non-perturbative contribution

RI/MOM and Goldstone pole contamination



• the WI determination of ZS/ZP has a denominator term (absent from the RI/MOM 
determination) which eliminates the divergent behaviour of ΓP at vanishing quark mass

• the Goldstone pole contribution is seen more explicitly in the non-perturbative part of the 
quark propagator

perturbative contribution
NLO non-perturbative contribution

ΓS(p;m1, m2) = Σ2(p;m) + m
∂Σ2(p;m)

∂m
+O

(
p−4)

ΓP (p;m) =
ZS

ZP
Σ2 (ap, am) − ZψZS

m
K ′g2

0
〈ψ̄ψ〉s

p2

LO non-perturbative contribution

ZP

ZS
=

ΓS
ΓP

1 + m
ΓP

∂ΓP
∂m

• on the contrary, the RI/MOM determination has this Goldstone pole contamination

RI/MOM and Goldstone pole contamination



• the proposal of the above authors was to redefine ZP  by identifying, fitting and removing the 1/p2 
behaviour from the ΓP data, at finite quark mass m

• the corrected data is then extrapolated to zero quark mass

• another way is to implement the following combination of vector and axial WIs in the 
computation of ZS/ZP; note that non-degenerate masses are ivolved

• how much is our data affected by this?

• the contamination even at large (“pertrubative”?) scales of about 1-2 GeV has been 
recognized in early data

• the non-pertrurbative contributions in the denominator cancel at LO in 1/p2

RI/MOM and Goldstone pole contamination
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• this is a quenched computation

 D.Becirevic et al., JHEP08 (2004) 022

RI/MOM and Goldstone pole contamination

• the low p2 behaviour is significantly 
modified (smoothed out)

• this results to a better plateau at large p2 

(but datasets appear to be converging)

• extrapolate l inear ly to 
vanishing quark mass



• compute Z’s from amputated - projected correlation functions at fixed coupling and many 
momentum scales

• divide out the discretization effects predicted by lowest order perturbation theory (optional)

• correct for Goldstone pole contaminations wherever they appear

• extrapolate to vanishing quark mass

• NB: personal prejudice: when applicable (ZV, ZA and ZP/ZS), prefer WIs (explicitly scale 
independent) to RI/MOM; in this way you avoid a systrematic uncertianty due to the 
Goldstone pole

• once you have from WIs, compute ZP as the product [ ZP/ZS ] × ZS, thus avoiding problems 
with Goldstone pole contaminations

RI/MOM recapitulation

QΓ

p1 p2

• NEW proposal is the RI/SMOM scheme: work with non-
exeptional momenta p12 = p12 = q2

• this removes the dominant Goldstone pole effect

q
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