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Lecture 2:

Schrodinger Functional




RG-running on the

lattice: motivation




Operator RG-running

suppose a quantity Q(H) (quark mass, operator WME) is renormalized in a NP scheme

Qr(p) = lim Zq(gq, ap) Q(gp)

if you use a hadronic scheme, the renormalization scale is going to be low P~ my

you need to know Q(H) at a larger scale either for conventional reasons (e.g. people are

used to MS-scheme quark masses mqg(M) with U~2GeV) or for matching with perturbative
scales, as in the OPE:

= > Cwl(p) lim [ Zo(g5,ap) < flQ(g5) i > |

a—0




Operator RG-running

suppose a quantity Q(H) (quark mass, operator WME) is renormalized in a NP scheme

Qr(p) = lim Zq(gq, ap) Q(gp)

if you use a hadronic scheme, the renormalization scale is going to be low U~ my

you need to know Q(M) at a larger scale either for conventional reasons (i.e. people are

used to MS-scheme quark masses mqg(M) with U~2GeV) or for matching with perturbative
scales, as in the OPE:

Wilson coefficients
calculated in PT renormalization scale

short-distance effects must be large; say 10GeV
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Operator RG-running

suppose a quantity Q(H) (quark mass, operator WME) is renormalized in a NP scheme

Qr(p) = lim Zq(gq, ap) Q(gp)

if you use a hadronic scheme, the renormalization scale is going to be low U~ my

you need to know Q(M) at a larger scale either for conventional reasons (i.e. people are

used to MS-scheme quark masses mqg(M) with U~2GeV) or for matching with perturbative
scales, as in the OPE:

= > Cw(p) lim [ Zo(g3,an) < f1Q(g3) i > |

a—0

e N
must be O(1), so as to avoid large logs

must be smaller than |, so as to avoid discretization errors
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Operator RG-running

suppose a quantity Q(H) (quark mass, operator WME) is renormalized in a NP scheme

Qr(p) = lim Zq(gq, ap) Q(gp)

if you use a hadronic scheme, the renormalization scale is going to be low U~ my

you need to know Q(M) at a larger scale either for conventional reasons (i.e. people are

used to MS-scheme quark masses mqg(M) with U~2GeV) or for matching with perturbative
scales, as in the OPE:

QP™ = ¥ Cw(p) lim [ Zg(g3,ap) < f1Q(g5)1i > ]

a—0

if we wish to compute everything at one go (a single lattice) we must also ensure that my L
>> |, in order to avoid finite size errors

i.e. we must satisfy L >> [/mnp ~ 1/(0.15 GeV) >> |/p ~ 1/(10 GeV) > a

IMPOSSIBLE on present day resources as it gives L/a = O(100-1000)




Operator RG-running

suppose a quantity Q(H) (quark mass, operator WME) is renormalized in a NP scheme

Qr(p) = lim Zq(gq, ap) Q(gp)

if you use a hadronic scheme, the renormalization scale is going to be low U~ my

you need to know Q(M) at a larger scale either for conventional reasons (i.e. people are

used to MS-scheme quark masses mqg(M) with U~2GeV) or for matching with perturbative
scales, as in the OPE:

QP™ = ¥ Cw(p) lim [ Zg(g3,ap) < f1Q(g5)1i > ]

a—0

need to compute the renormalized VME at a hadronic (low) scale Pmin and then do RG-
running all the way to a perturbative (high) scale Pmax

an option is using PT for the RG running, introducing ill-controlled O(g") systematic errors

the SF scheme, combined with finite size techniques, is the only one used so far for non-
perturbative RG-running




RG-running: generalities




RG-running in the continuum

the basic idea is always that of Callan-Symanzik

there are mass-independent renormalization schemes, in which the renormalization conditions
are imposed at the chiral limit (this is sufficient to remove UV divergences)

in such schemes the renormalization constants and running functions do not depend on the
theory’s masses: Zg(al,l, go), Zm(a|.,l, go), B(gR),Y(gR) etc.

first we reformulate what we know from continuum QCD renormalization (usually worked
out in PT) in a general, non-perturbative (N.P) language, suitable to N.P. computations

we start with the RG-running of the gauge coupling, expressed in terms of the Callan-
Symanzik B-function

J9r
uau

it is simple to integrate this from a reference scale o to a general scale U

gr(K) g
o {_ /QR(MO) Wﬁ]])}

B(gr) =




RG-running in the continuum

po exp[_/gR(u) ﬁ}
f gr(1o) B(9)

® it is natural, for an asymptotically free theory (QCD), to choose the reference scale hop —
00, for which gr(Ho) — 0

® we know, however, the perturbative behaviour of the beta function at small couplings

Bg) = —¢ [bo + big® + bag + o |

N

e N
renormalization scheme

universal

dependent
[10 _T} - P y,

(4m)* )

® the perturbative expression for B(gR) tells us that the above integral diverges at the lower
end gr(Mo) = 0, due to the first two terms of the expansion (NLO)




RG-running in the continuum

140 _ exp[_/gR(M) dg}
f gr(1o) B(9)

® trick: add and subtract the potentially diverging term |/BN|_o(gR) tin the intergrarnd:

gR(u)d 1 1 gr (1)
S [_/ngO) ? [@ - 5NL0(9)H P [_ /ngO)

—

(regular in the limit gr(Mo) — 0 j [divergent in the limit gr(Mo) — 0; calculable for ggr(Ho) # Oj

® calculate the NLO integral (for gr(Mo) # 0) and carry everything that depends on Lo to the
LHS, leaving all [l-dependent quantities on the RHS

1
2bo g5 (10

} —b1/(2b7)

Ho €xp [— )] [509%{(#0)

1 —b1/(2b2) gr(p) 1
pEED [_ 200 g (1) ’ ('u)} - [_ /gR(,uO) 49 [5(9) "




RG-running in the continuum

1
2bo g7 (140)

1 o2 (1) —by/(2b3) gr () ; [
,uexp[— } [09 ,LL} exp[—/ g
Qbog%(u) " gr (Ho)

Ho €XP | —

}—bl/(%g)

| [bogi (o)

® in the limit gr(Mo) — 0, the RHS is Ho independent; therefore the same holds for the LHS

® this enables us to define an energy scale, typical of the theory

1
2bo g7 (140)

1 —by /(2b2) gr (1)
Aqcp = p exp {— Qbogﬁ(u)} {bOg%{(M)} : eXp {_/o dg [

} —b1/(2bg)

Agqecp = lim pg eXp[— } [bogé(ﬂo)

o —0C




RG-running in the continuum

]bl/(%g)

: 1
Aqep = Mglgloo fo €xp {— 2hog? (,uo)] {bogﬁ(ﬂo)

1 —by/(2b3) gr(p) 1 1 b,
A = exp[— } {b g? } exp{—/ dg | —— + — ]
aep = A 2bog (1)) L 29 0 [5(9) bog* b?)g}

this is an exact expression, from which standard PT results for LO and NLO cases may be
obtained

the “miracle” of renormalization is that, even for massless QCD, it generates an energy scale

Aqcp is Renormalization Group Invariant (RGI; i.e. p-independent) but depends on the
renormalization scheme (P is scheme independent only to NLO order)

Aqcp depends on the number of quark flavours (cf. bo, bi) but not on the value of the quark
masses; in fact it may be calculated in PT, or computed NPY with Nf massless quarks

already at LO you can see from above that Aqcp corresponds to a NP coupling (oxymoron!)

1
2bo In(p/Aqep)




RG-running in the continuum

1 —by /(2b2) gr (1) 1
Aqcp = p exp {— Qbogﬁ(u)} {bogé(ﬂ)} exXp {—/0 dg [@ T

suppose we have chosen a scheme; i.e. we have a definition of ggr(M), accompanied by a
renormalization condition for the coupling

suppose that we have developed a powerful NP method (lattice) with which to compute B(l)
in a vast range of scales: from, say Pmin ~ AQcp to Pmax ~ 100 GeV

the above tells us that the dimensionless ratio Agcp /M can be calculated from first principles
of QCD, without any “physical” input (e.g. a hadronic mass or any other experimentally known
quantity); this ratio is a “pure” Quantum Field Theory quantity

a “physical” input is required (as shown below) in order to establish the correspondence of a
given reference coupling gr(Mrer) to its scale Hrer (in GeV); from this, Aqcp (in GeV) s
immediately obtained

we will show that the Schrodinger Functional renormalization scheme beautifully fulfills these
expectations




The Schrodinger

Functional

M.Luscher, R.Narayanan, P.Weisz, U.Wolff Nucl.Phys.B384(1992) 168
M.Luscher, R.Sommer, U.Wolff, P.Weisz Nucl.Phys.B389(1993)247

S. Sint Nucl.Phys.B421(1994)135; Nucl.Phys.B451(1995)416
M.Luscher, S.Sint, R.Sommer, P.Weisz Nucl.Phys.B478(1996)365
S.Capitani, M.Luscher, R.Sommer, H.Wittig Nucl.Phys.B544(1999)669




Schrodinger Functional in the continuum

the SF scheme is defined in a finite L* volume, with periodic
boundary conditions (b.c.s) in space and Dirichlet b.cs in time

For a Yang-Mills theory this means that we must specify the gauge T
configurations at the time boundaries

t

A2(@) = Q) Au@)Q2 (@) + A2)0, Q)

T

[Gauge transformationj

Dirichlet b.c’s at time boundaries




Schrodinger Functional in the continuum

® the SF scheme is defined in a finite L* volume, with periodic
boundary conditions (b.c.s) in space and Dirichlet b.cs in time

® the Euclidean partition function defines the SF

T

(standard Haar measures) ( standard Gauge action with SF b.c.’s)

2[c',C) = [ DI [ DA exp{-SlA)}
L]

the integration over () ensures that the SF is invariant under gauge transformations of the
boundary fields C and C

the SF is the quantum mechanical transition amplitude from a state |[C > to a state |C’> within
time L

we must extend this formalism to QCD by including fermions




Schrodinger Functional in the continuum

the SF scheme is defined in a finite L* volume, with periodic
boundary conditions (b.c.s) in space and Dirichlet b.cs in time

Dirichlet boundary conditions for quarks imply that we must fix T
only half of the components of the fermion fields at the boundaries

with such b.c’s the (first order) Dirac operator has a unique ©
solution

Py

B Dirichlet b.c)s at xo = 0

bP_

P_w JZOZL
¢P+ w():L

Dirichlet b.c)sat xo = L

P = —(1+4+ ) projects +ve (-ve) energy field components;i.e.
2 forward (backward) movers




Schrodinger Functional in the continuum

the SF scheme is defined in a finite L* volume, with periodic
boundary conditions (b.c.s) in space and Dirichlet b.cs in time

Dirichlet boundary conditions for quarks imply that we must fix T
only half of the components of the fermion fields at the boundaries

with previous b.c’s the quantum mechanical interpretation of the SF 1
is analogous to that of the Yang Mills theory

Z[C, 705 C By o] = / DIAID[]D[] exp{—S[A, v, 8]}

S|A, ¥, ¥] = SqcplA, ¥, Y] —/d%[@(w)P—w(ﬂ?)]xo:o—/deW(x)P—w(x)]xO:L

T T T

(bulk action) ( d=3 counter-terms due to the SF boundary)

the existence of d < 3 boundary counter-terms is believed to be a general result; there is a
lot of corroborative evidence for it

these counter-terms induce multiplicative renormalization of the boundary fields p, p’, etc.

thus for vanishing p, p’, etc., the only SF renormalization is that of the mass and the coupling




Schrodinger Functional

renormalization scheme:
gauge coupling




SF scheme: gauge coupling

the background gauge field configuration B, minimizes the action for
specific configurations of boundary fields Cx and C’

the effective action is defined as ['[B] = - In Z [ C; C(’]

its perturbative expansion is

[B| = —1n2[C:0)] = 9—12F0[B]+F1[B]+93F2[B]+...

we need to define a coupling which depends only on a single scale; the available one is |/L

it is possible to parametrize Cx and C’ in terms of a dimensionless parameter I, so that LB
depends on n;i.e. the field strength scales as |/L

® a choice for the renormalized coupling (i.e. a renormalization scheme) is the definition

[881;70 /((?917;] n=0




SF scheme: gauge coupling

the background gauge field configuration B, minimizes the action for
specific configurations of boundary fields Cx and C’

the effective action is defined as ['[B] = - In Z [ C; C(’]

its perturbative expansion is

[B| = —1n2[C:0)] = 9—12F0[B]+F1[B]+93F2[B]+...

we need to define a coupling which depends only on a single scale; the available one is |/L

it is possible to parametrize Cx and C’ in terms of a dimensionless parameter I, so that LB
depends on n;i.e. the field strength scales as |/L

other definitions (i.e. other schemes) are possible, e.g.

4 )

§2 (L) _ [3 QFqu(T, L)} force between static

—T
4 r=L/2 quarks at distance r in a
L box L )




SF scheme: gauge coupling

the background gauge field configuration B, minimizes the action for
specific configurations of boundary fields Cx and C’

the effective action is defined as ['[B] = - In Z [ C; C(’]

its perturbative expansion is

1

I''B] = —InZ[C’;C] 5
90

® the SF coupling has the following attractive features:

on " Onln=o0

depends on a single scale g = |/L
is an inherently non-perturbative definition

the SF b.cs exclude gluon zero modes; coupling may be computed even at small boxes L°

relation between S.F and MS has been worked out in PT

11

asr(L) = ag(p) + [%ln(,uL) — 1.2556] agpg (1)




Step scaling function

® we define (in the continuum) a discrete version of the B-function, the step scaling function @

® it describes the change of the coupling between an (inverse) scale L and an an (inverse) scale
sL, for s integer (typically s=2)

go(sL) =

this is a discrete form of the Callan-S ik beta function

differentiate both sides w.rt. 4 d/dy = - L d/dL and use above

u  do(s,u)

Vel = BIval |

s,u)  du

so if we know the ssf, we can reconstruct the Callan-Symanzik function recursively

the step scaling function in PT is given by

o(s,u) = u + 2bgln(s)u® + ---




Step scaling function

we next define (in the continuum) a discrete version of the B-function, the step scaling function
it describes the change of the coupling between an (inverse) scale L and an an (inverse) scale

sL, for s integer (typically s=2)

/

g°(sL) = u o(s,u) = u'

this setup is suitable for a NP computation of the coupling / step scaling function

in practice we compute NP-ly the step scaling function in a range of couplings umin and Umax,
corresponding to two scales Pmax and Mmin; SO we obtain the RG-running between them

the two scales are separated by a power of s, i.e. Pmax = ¥ Hmin, typically s=2

the gauge coupling and step scaling function calculations requires choosing a regularization:
lattice is the obvious choice

on the lattice it has an additional dependence on the lattice resolution L/a

Y(s,u,a/L) o(s,u) = lim X(s,u,a/L)

a—0




Step scaling function

® |attice gauge action of choice is the Wilson plaquette one, with some care at the t-boundaries

® Jattice fermion action of choice is Wilson, with some care at the t-boundaries

® proceed as follows:

choose a lattice with L/a points in each direction

tune bare coupling so that the renormalized
coupling has a fixed value

~2
at the same bare coupling, compute the — g (2L) = u'
renormalized coupling on a lattice twice as big 2L/a —  Y(2,u,a/L)
) )

repeat this for several resolutions L/a, L”/a

extrapolate to the continuum o(s,u) = ili% >i(s,u,a/L)

on * dnln=0




Step scaling function: results for Ny = 2

u=1.7319

u=1.5031

u=1.1814

u=0.8793

M.Della Morte et al. Nucl.Phys.B713(2005)378

- g'(2L) = o
> (2,u,a/L)

lim >(s,u,a/L)

a—0




Step scaling function: results for Ny = 2

e M.Della Morte et al. Nucl.Phys.B713(2005)378

SF scheme, N,=2

---- 2-loop

— — 3-loop
non-pert. fit

- g'(2L) = o
= X(2,u,a/L)

o(s,u) = lim (s,u,a/L)

a—0

an expression of the continuum ssf O(u), as a function of the coupling u, is obtained by
fitting the points above; so we know the ssf in a range [Umin, Umax], corresponding to a
range of (still unknown!) scales [Umax, Umin] ( or equivalently [Lmin, Lmax] )

NB: the agreement/disagreement between PT/NP is a scheme-dependent observation




Step scaling function: results for Ny = 2

M.Della Morte et al. Nucl.Phys.B713(2005)378

T ' L 4 T L 4 L 4

SF scheme, N =2

- === 2=loop

— — J=loop
non-pert. fit

an expression of the continuum ssf G(u), as a function of the coupling u, is obtained by fitting

the points above; so we know the ssf in a range [Umin , Umax], corresponding to a range of (still
unknown!) scales [HPmax , Mmin] (or equivalently [Limin , Lmax])

NB: the agreement between PT/NP at low couplings is scheme dependent!!




Step scaling function: results for Ny = 2

e M.Della Morte et al. Nucl.Phys.B713(2005)378

SF scheme, N,=2

---- 2-loop

— — 3-loop
non-pert. fit

- g'(2L) = o
= X(2,u,a/L)

o(s,u) = lim (s,u,a/L)

a—0

an expression of the continuum ssf O(u), as a function of the coupling u, is obtained by
fitting the points above; so we know the ssf in a range [Umin, Umax], corresponding to a
range of (still unknown!) scales [Umax, Umin] ( or equivalently [Lmin, Lmax] )

NB: the agreement/disagreement between PT/NP is a scheme-dependent observation




Gauge coupling: results for Ny = 2

® knowing NPly ssf O(u), we can now compute NP-ly the running strong coupling:

® on the previous plot of O(u) vs. u, choose a number of discrete couplings:

m

= §2(Lmin) (known from P )

7°(2Lmin) Pmay

Hmax m
mase/ 2 « A
§2 (4Lmin) — a %L M oF

:umax/ 4%9{%

Asp_ 2Pmin_4fimin Mrr%%mk Asp
Hmin Hmin 2,u\lrnf"m ,umax/4 Hmza Q%ax

}—bl/(%g)




Gauge coupling: results for Ny = 2

® knowing NPly ssf O(u), we can now compute NP-ly the running strong coupling:

® on the previous plot of O(u) vs. u, choose a number of discrete couplings:

(
kknown from PT)

Hmin Hmin Q,U\mfm ,umax/4 Hmza 2%9&

g iteratively work out couplings u(L) and A thus we obtain the correspondence

u(2L) for each pair of successive scales U between u(L) and Ase/M (with Y =1/L) for

. and M/2 from ssf O(u) . the whole range of scales U )




Gauge coupling: results for Ny = 2

® knowing NPly ssf O(u), we can now compute NP-ly the running strong coupling:

® on the previous plot of O(u) vs. u, choose a number of discrete couplings:

(
kknown from PT)

§2(2Lmin)

§2 (4Lmin)

—2/ak i i Hma 2 M
U = g (2 Lin = Lmax T \\/
) Hmin Hmin Q,u\mfm ,umax/4 Hmza 2%&

0~5 Ll L) TR NTNy Al L | TTT‘T] Ll LA YYTYYI'
-

SF scheme, N,=2

M.Della Morte et al. Nucl.Phys.B713(2005)378 04 3-loop

® NB: again the scale [ is expressed in units of
the (still unknown) Asf; we need to know
in physical units e.g. GeV




Physical scale

all results obtained so far are “purely field theoretic”;i.e. they have been obtained from
the massless QCD action, without any external (experimental) input

this is the reason that everything so far involved dimensionless quantities

in order to make contact with the real world, we need to know Hmin (or Asf) in
physical units

strategy:

® for a series of lattice resolutions Lmax/a, Lmax/a’, Lmax/a”, ... , tune the bare couplings
g0, 80, 80, ... O as to have the same fixed renormalized coupling gr(Lmax) = const.

for these bare couplings compute some suitable physical quantity; e.g. the proton
mass amp, a’mp, @’ M, ...

the products [Lmax/a]*[amp], extrapolated to the continuum for all lattice spacings
a,a,a’,..,gives us Lmax mp

® use the physical (expt.lly known) value of m, to get Lmax (i.e. Pmin) and thus Asr

® for historical (quenching) and practical reasons, another observable known as the
Sommer parameter ro is used instead of m,




Physical scale

® the parameter rp is the physical distance at which the static quark-antiquark potential
F(r) has a chosen fixed value:

72 F(r)]per, = 1.65

N4

(dimensionless quantity)

phenomenological models suggest that
for [ r> F(r) ] = 1.65, we get ro= 0.5 fm

the rest is similar to the procedure described previously, based on the proton mass;
instead of my, we have I/rg

SO we are in a position to compute Mmin (or Asg) in physical units
however, people prefer to see AM—S

this implies that we have to match the SF scheme to MS




A\-dependence of renormalization scheme

“I”

® given two schemes and “2”, the corresponding renormalized couplings are
connected, to all orders in PT by the relation

G5 = G5 [1+c1G5+cogy+c3gs-

® recall that the corresponding /A parameters are written as

—b1/(2b3)

o — 0

A1,2 = lim po exp{ 1 (Mo)} [b091 2(#0)}

2b0912

® from these expressions we can work out the ratio, valid to all orders in PT

A exp [~ ]
Ao 2bg
® NB: only the first perturbative coefficient is necessary!!

® the scheme matching has been worked out between SF and MS

ASLTS = 245(16)(16)MeV  with 1o = 0.5fm




Schrodinger Functional

renormalization scheme:
quark mass




Quark mass RG-running and the SF

having dealt with the gauge coupling we turn to the other QCD fundamental
parameters, i.e. the quark masses

they are “unphysical” (i.e. non-observable) field theoretic quantities, which depend on
the renormalization scale

their RG-running is governed by the anomalous dimension y

in 2 mass independent scheme, Y(gr) depends on the number of flavours but not on
the quark masses

it is defined as: mR ’Y(QR) —

and has the following perturbative expansion:

d()—l—dlg +d2g —|-'°'

ﬂ \\ \

renormalization scheme

dependent
\




Quark mass RG-running and the SF

the quark mass RG equation is integrated between a minimum and a maximal energy
scale; the former is taken to infinity (i.e. coupling to zero)

this procedure is similar to that exposed in detail for the gauge coupling, and gives rise
to a constant quantity, with the dimensions of mass

}—do/(%o)

Mgrar = lim mg(po) {250 9 (1o)

o — 3

Mgrar = mr(p) [Qbo 9}2{(,“)} _dO/(%O)eXP [— /OQR(M) dg [% - g(l)—(?qﬂ

\ /
—

[regular in the limit gr(Ho) — 0 j

the ratio of the RGI mass Mra| to the renormalized mass mr(M) is a field theoretic
quantity, independent of any physical input

it depends on the flavour number, but not on the quark mass value

using the definition of the RGI mass for two distinct schemes, it can be shown that it is
a scheme independent quantity




Quark mass RG-running and the SF

® the definition of the quark mass step scaling function is the ratio of the renormalized
masses at two consecutive scales, at

mr(p) _ Zp (aL)mwlgo) _ Zp (al)
mgr(/s) 75 (asL) mrolgo) 75" (asL)

/ .

[at same renorm. coupling uj ( goz corresponding to u j [this is how it is computedj

op(s,u)

0.98;
computation performed at zero quark 0.96!

mass (i.e. ssf defined in the chiral 0.94)
limit) 0.92}

. . : 0.9}
it follows recursive logic of the

coupling ssf computation

the lattice ssf 2p(u,L) is computed at
several renormalized couplings and
extrapolated to the continuum limit (alLy?

the Nf= 2 result is shown
M.Della Morte et al. Nucl.Phys.B729(2005) | | 7




Quark mass RG-running and the SF

® knowing NPly ssf op(u), we can now compute NP-ly the running strong coupling

M _ mRr(2pmm) m min) ~ MR (Hmax/2) MR (Pmax) M

mR(,umin) B mR(,umln \@UmD\ \{”L[Lmax/ZJL MMmaX/M ,umax

/

known from ssf O‘p(u)

M —do/(2b3) g(Hmax)
— {260g2(,umax)} exp / dg [
MR (fmax) A 0

B(9)

0-8 T "." rrrry T TY—rrTrrrr T LA IYTTYI'
m(w)/M ! SF scheme, N,=2 |
\

— 2/3-loop

---1/2-loop

M

Mg, (,umin)

— 1.297(16) Nf=2

M.Della Morte et al. Nucl.Phys.B729(2005) 1 | 7




Quark mass RG-running and the SF

® now the RGI quark mass of a given flavour f can be computed

M M
Mf — ! mR(:umin) — ! lim Z (a,umlnagO) mPCAC(gO)

MR (Hmin) mR(NAmin) a—0 7 NN
] A

g regularization RN regularization

(scheme independent) scheme dependent dependent dependent
scale dependent
scale dependent ) | { scale dependent |

~N

\_

(known in the C.L.) . T our
computed NPly dependence

® the bare PCAC quark mass is defined as

Za 0o fa |
MmpCAC = )
5 pace

2 fp

® for SF correlation functions:

/P ( P(x) O(0) )

fa ( Ao(z) O0) ) (" boundary source composite field with
1 pseudoscalar quantum numbers




Quark mass RG-running and the SF

® now the RGI quark mass of a given flavour f can be computed

M M
! MR (Mmin) = ! lim Z5"(apimin, 90) mpcac(go)

mR(Mmin) mR(:umin) a—0 A \ A A
I A

g regularization RN regularization

(scheme independent) scheme dependent dependent dependent
scale dependent
scale dependent scale dependent

~N

.

(known in the C.L.) e -
computed NPly dependence

® the SF renormalization condition for the
pseudoscalar density is: | o

—_——-

-

ZP(LmaX) fP(LmaX/2) — TIL. [fP(LmaX/Q)} )spacc

Vh
pd

" cancels boundary\ : \
quark field (tree Ievel) -

renormalization
L alizatio )

Vi




My =

Quark mass RG-running and the SF

® now the RGI quark mass of a given flavour f can be computed

M M
f. mR(,umjn) = ! lim Z a,ummago mPCAC gO
mR(,umln) mR(,Lme a—>0
T fIavour

scheme dependent must be de endence
scale dependent computed NPly P

simulations at the physical up/down quark masses are a daunting task
simulations in the mass range [ ms/4 , mc ] are nowadays feasible

a nice approach is to define a reference quark mass (approximately ms/2) for which a
“Kaon” consisting of two degenerate valence quarks weighs 495 MeV (the “physical” value)

this “world” is a two degenerate flavour (Nf = 2) theory

the previous SF procedure, once the bare quark mass is tuned to the reference quark mass
etc., gives Mrer = 72 (3) (13) MeV

next use the chiral PT result Ms = 48/25 Mef, to obtain Mstrange = 138 (5) (26) MeV
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Recapitulation of RG-running with the SF

them in high-energy phenomena (jet Physics)

l

W = 2n/LmaX

[PT—regime: compute RGI quantities (Aqcp, Mra); Usﬂ

renormalization
scale (energy) ( n recursive steps)

U = 1/Lmax
Lax ~ 0.5fm

A

(Schrédinger Functional scheme)

(hadronic scheme)

phys
mp ( ° . \
NP-regime: compute hadronic

matrix elements and SF

renorm. constants
. J

phys
m’ﬂ'




