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Lecture 2:
Schrödinger Functional



RG-running on the 
lattice: motivation



Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ∼ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (e.g. people are 
used to MS-scheme quark masses mq(μ) with μ∼2GeV) or for matching with perturbative 
scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

QR(µ) = lim
a→0

ZQ(g2

0 , aµ) Q(g2

0)



Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ∼ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people are 
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Wilson coefficients
calculated in PT

short-distance effects 
renormalization scale

must be large; say 10GeV
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Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ∼ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people are 
used to MS-scheme quark masses mq(μ) with μ∼2GeV) or for matching with perturbative 
scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

must be O(1), so as to avoid large logs 
must be smaller than 1, so as to avoid discretization errors

QR(µ) = lim
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ZQ(g2

0 , aµ) Q(g2

0)



Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ∼ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people are 
used to MS-scheme quark masses mq(μ) with μ∼2GeV) or for matching with perturbative 
scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

• if we wish to compute everything at one go (a single lattice) we must also ensure that mH L 
>> 1, in order to avoid finite size errors

• i.e. we must satisfy L >> 1/mH ∼ 1/(0.15 GeV) >> 1/μ ∼ 1/(10 GeV) > a

• IMPOSSIBLE on present day resources as it gives L/a = O(100-1000)

QR(µ) = lim
a→0

ZQ(g2

0 , aµ) Q(g2

0)



Operator RG-running

• suppose a quantity Q(μ) (quark mass, operator WME) is renormalized in a NP scheme

• if you use a hadronic scheme, the renormalization scale is going to be low μ∼ mH

• you need to know Q(μ) at a larger scale either for conventional reasons (i.e. people are 
used to MS-scheme quark masses mq(μ) with μ∼2GeV) or for matching with perturbative 
scales, as in the OPE:

Qphys =
∑

CW (µ) lim
a→0

[

ZQ(g2
0 , aµ) < f |Q(g2

0) |i >
]

• need to compute  the renormalized WME at a hadronic (low) scale μmin and then do RG-
running all the way to a perturbative (high) scale μmax

• an option is using PT for the RG running, introducing ill-controlled O(gn) systematic errors

• the SF scheme, combined with finite size techniques, is the only one used so far for non-
perturbative RG-running

QR(µ) = lim
a→0

ZQ(g2

0 , aµ) Q(g2

0)



RG-running: generalities



RG-running in the continuum

• the basic idea is always that of Callan-Symanzik

• there are mass-independent renormalization schemes, in which the renormalization conditions 
are imposed at the chiral limit (this is sufficient to remove UV divergences)

• in such schemes the renormalization constants and running functions do not depend on the 

theory’s masses:  Zg(aμ, g0),  Zm(aμ, g0), β(gR), γ(gR) etc.

• first we reformulate what we know from continuum QCD renormalization (usually worked 
out in PT) in a general, non-perturbative (N.P.) language, suitable to N.P. computations

• we start with the RG-running of the gauge coupling, expressed in terms of the Callan-
Symanzik β-function

β(gR) = µ
∂gR

∂µ

• it is simple to integrate this from a reference scale μ0 to a general scale μ

µ0

µ
= exp

[
−

∫ gR(µ)

gR(µ0)

dg

β(g)

]



RG-running in the continuum

• it is natural, for an asymptotically free theory (QCD), to choose the reference scale μ0 → 
∞, for which gR(μ0) → 0

• we know, however, the perturbative behaviour of the beta function at small couplings

µ0

µ
= exp

[
−

∫ gR(µ)

gR(µ0)

dg

β(g)

]

b0 =
1

(4π)2
[
11− 2Nf

3
]

b1 =
1

(4π)4
[
102− 38Nf

3
]

universal
renormalization scheme

dependent

• the perturbative expression for β(gR) tells us that the above integral diverges at the lower 

end gR(μ0) = 0, due to the first two terms of the expansion (NLO)

β(g) = −g3
[
b0 + b1 g2 + b2 g4 + · · ·

]



RG-running in the continuum

µ0

µ
= exp

[
−

∫ gR(µ)

gR(µ0)

dg

β(g)

]

divergent in the limit gR(μ0) → 0; calculable for gR(μ0) ≠ 0

• calculate the NLO integral (for gR(μ0) ≠ 0) and carry everything that depends on μ0 to the 

LHS, leaving all μ-dependent quantities on the RHS

• trick: add and subtract the potentially diverging term 1/βNLO(gR) tin the intergrarnd:

µ0 = µ exp
[
−

∫ gR(µ)

gR(µ0)
dg

[ 1
β(g)

− 1
βNLO(g)

]]
exp

[
−

∫ gR(µ)

gR(µ0)
dg

1
βNLO(g)

]

regular in the limit gR(μ0) → 0 

µ0 exp
[
− 1

2b0g2
R(µ0)

] [
b0g

2
R(µ0)

]−b1/(2b20)
=

µ exp
[
− 1

2b0g2
R(µ)

] [
b0g

2
R(µ)

]−b1/(2b20)
exp

[
−

∫ gR(µ)

gR(µ0)
dg

[ 1
β(g)

+
1

b0g3
− b1

b2
0g

]]



RG-running in the continuum

µ0 exp
[
− 1

2b0g2
R(µ0)

] [
b0g

2
R(µ0)

]−b1/(2b20)
=

µ exp
[
− 1

2b0g2
R(µ)

] [
b0g

2
R(µ)

]−b1/(2b20)
exp

[
−

∫ gR(µ)

gR(µ0)
dg

[ 1
β(g)

+
1

b0g3
− b1

b2
0g

]]

• in the limit gR(μ0) → 0, the RHS is μ0 independent; therefore the same holds for the LHS

• this enables us to define an energy scale, typical of the theory

ΛQCD = µ exp
[
− 1

2b0g2
R(µ)

] [
b0g

2
R(µ)

]−b1/(2b20)
exp

[
−

∫ gR(µ)

0
dg

[ 1
β(g)

+
1

b0g3
− b1

b2
0g

]]

ΛQCD ≡ lim
µ0→∞

µ0 exp
[
− 1

2b0g2
R(µ0)

] [
b0g

2
R(µ0)

]−b1/(2b20)



RG-running in the continuum

ΛQCD = µ exp
[
− 1

2b0g2
R(µ)

] [
b0g

2
R(µ)

]−b1/(2b20)
exp

[
−

∫ gR(µ)

0
dg

[ 1
β(g)

+
1

b0g3
− b1

b2
0g

]]

ΛQCD ≡ lim
µ0→∞

µ0 exp
[
− 1

2b0g2
R(µ0)

] [
b0g

2
R(µ0)

]−b1/(2b20)

• this is an exact expression, from which standard PT results for LO and NLO cases may be 
obtained

• the “miracle” of renormalization is that, even for massless QCD, it generates an energy scale

• ΛQCD is Renormalization Group Invariant (RGI; i.e. μ-independent) but depends on the 
renormalization scheme (β is scheme independent only to NLO order)

• ΛQCD depends on the number of quark flavours (cf. b0, b1) but not on the value of the quark 
masses; in fact it may be calculated in PT, or computed NPly with Nf massless quarks

• already at LO you can see from above that ΛQCD corresponds to a NP coupling (oxymoron!)

g2
R(µ) = − 1

2b0 ln(µ/ΛQCD)



RG-running in the continuum

• suppose we have chosen a scheme; i.e. we have a definition of gR(μ), accompanied by a 
renormalization condition for the coupling

• suppose that we have developed a powerful NP method (lattice) with which to compute β(μ) 
in a vast range of scales: from, say μmin ∼ ΛQCD to μmax ∼ 100 GeV

• the above tells us that the dimensionless ratio ΛQCD /μ can be calculated from first principles 
of QCD, without any “physical” input (e.g. a hadronic mass or any other experimentally known 
quantity); this ratio is a “pure” Quantum Field Theory quantity

• a “physical” input is required (as shown below) in order to establish the correspondence of a 
given reference coupling gR(μref) to its scale μref (in GeV); from this, ΛQCD (in GeV) is 
immediately obtained

• we will show that the Schrödinger Functional renormalization scheme beautifully fulfills these 
expectations

ΛQCD = µ exp
[
− 1

2b0g2
R(µ)

] [
b0g

2
R(µ)

]−b1/(2b20)
exp

[
−

∫ gR(µ)

0
dg

[ 1
β(g)

+
1

b0g3
− b1

b2
0g

]]



The Schrödinger 
Functional

M.Lüscher, R.Narayanan, P. Weisz, U.Wolff Nucl.Phys.B384(1992)168
M.Lüscher, R.Sommer, U.Wolff, P. Weisz Nucl.Phys.B389(1993)247
S. Sint Nucl.Phys.B421(1994)135; Nucl.Phys.B451(1995)416
M.Lüscher, S.Sint, R.Sommer, P. Weisz Nucl.Phys.B478(1996)365
S.Capitani, M.Lüscher, R.Sommer, H. Wittig Nucl.Phys.B544(1999)669



Schrödinger Functional in the continuum

• the SF scheme is defined in a finite L4 volume, with periodic 
boundary conditions (b.c.’s) in space and Dirichlet b.c.’s in time

• For a Yang-Mills theory this means that we must specify the gauge 
configurations at the time boundaries

t

x

Ak(x) = CΩ
k (!x) @ x0 = 0

Ak(x) = C ′
k(!x) @ x0 = L

AΩ
µ (x) = Ω(x)Aµ(x)Ω−1(x) + Ω(x)∂µΩ(x)−1

Gauge field Gauge transformation

Dirichlet b.c.’s at time boundaries

Ak(x) = Ak(x + L!k)

Ω(!x) = Ω(!x + L!k) @ x = (!x, 0)
periodic b.c.’s in space



Schrödinger Functional in the continuum

• the SF scheme is defined in a finite L4 volume, with periodic 
boundary conditions (b.c.’s) in space and Dirichlet b.c.’s in time

• the Euclidean partition function defines the SF

t

x

standard Haar measures standard Gauge action with SF b.c.’s

Z[C ′, C] =
∫
D[Ω]

∫
D[Aµ] exp{−SG[A]}

• the integration over Ω ensures that the SF is invariant under gauge transformations of the 
boundary fields C and C’

• the SF is the quantum mechanical transition amplitude from a state |C > to a state |C’ > within 
time L

• we must extend this formalism to QCD by including fermions



Schrödinger Functional in the continuum

• the SF scheme is defined in a finite L4 volume, with periodic 
boundary conditions (b.c.’s) in space and Dirichlet b.c.’s in time

• Dirichlet boundary conditions for quarks imply that we must fix 
only half of the components of the fermion fields at the boundaries

• with such b.c.’s the (first order) Dirac operator has a unique 
solution

t

x

Dirichlet b.c.’s at x0 = 0
P+ψ

∣∣
x0=0

= ρ

ψ̄P−|x0=0 = ρ̄

P−ψ
∣∣
x0=L

= ρ′

ψ̄P+|x0=L = ρ̄′
Dirichlet b.c.’s at x0 = L

P± =
1
2
(1 + γ0) projects +ve (-ve) energy field components; i.e. 

forward (backward) movers



Schrödinger Functional in the continuum

• the SF scheme is defined in a finite L4 volume, with periodic 
boundary conditions (b.c.’s) in space and Dirichlet b.c.’s in time

• Dirichlet boundary conditions for quarks imply that we must fix 
only half of the components of the fermion fields at the boundaries

• with  previous b.c.’s the quantum mechanical interpretation of the SF 
is analogous to that of the Yang Mills theory 

t

x

S[A, ψ, ψ̄] = SQCD[A, ψ, ψ̄]−
∫

d3x[ψ̄(x)P−ψ(x)]x0=0 −
∫

d3x[ψ̄(x)P−ψ(x)]x0=L

bulk action d=3 counter-terms due to the SF boundary

• the existence of d ≤ 3 boundary counter-terms is believed to be a general result; there is a 
lot of corroborative evidence for it

• these counter-terms induce multiplicative renormalization of the boundary fields ρ, ρ’, etc.

• thus for vanishing ρ, ρ’, etc., the only SF renormalization is that of the mass and the coupling

•

Z[C ′, ρ̄′, ρ′;C, ρ̄, ρ] =
∫
D[A]D[ψ]D[ψ̄] exp{−S[A, ψ, ψ̄]}



Schrödinger Functional 
renormalization scheme:  

gauge coupling



SF scheme: gauge coupling

• the background gauge field configuration Bμ minimizes the action for 
specific configurations of boundary fields Ck and Ck’

• the effective action is defined as Γ[B] ≡ - ln Z [ Ck; Ck’ ]

• its perturbative expansion is t

x
Γ[B] ≡ − lnZ[C ′;C] =

1
g2
0

Γ0[B] + Γ1[B] + g2
0Γ2[B] + . . .

Γ0[B] = g2
0 S[B]

• we need to define a coupling which depends only on a single scale; the available one is 1/L

• it is possible to parametrize Ck and Ck’ in terms of a dimensionless parameter η, so that LB 
depends on η; i.e. the field strength scales as 1/L 

• a choice for the renormalized coupling (i.e. a renormalization scheme) is the definition

ḡ2(L) =
[∂Γ0

∂η
/
∂Γ
∂η

]

η=0



SF scheme: gauge coupling

• the background gauge field configuration Bμ minimizes the action for 
specific configurations of boundary fields Ck and Ck’

• the effective action is defined as Γ[B] ≡ - ln Z [ Ck; Ck’ ]

• its perturbative expansion is t

x
Γ[B] ≡ − lnZ[C ′;C] =

1
g2
0

Γ0[B] + Γ1[B] + g2
0Γ2[B] + . . .

Γ0[B] = g2
0 S[B]

• we need to define a coupling which depends only on a single scale; the available one is 1/L

• it is possible to parametrize Ck and Ck’ in terms of a dimensionless parameter η, so that LB 
depends on η; i.e. the field strength scales as 1/L 

• other definitions (i.e. other schemes) are possible, e.g.

ḡ2(L) =
[3
4
r2Fqq̄(r, L)

]

r=L/2

force between static 
quarks at distance r in a 

box L



SF scheme: gauge coupling

• the background gauge field configuration Bμ minimizes the action for 
specific configurations of boundary fields Ck and Ck’

• the effective action is defined as Γ[B] ≡ - ln Z [ Ck; Ck’ ]

• its perturbative expansion is t

x
Γ[B] ≡ − lnZ[C ′;C] =

1
g2
0

Γ0[B] + Γ1[B] + g2
0Γ2[B] + . . .

Γ0[B] = g2
0 S[B]

• the SF coupling has the following attractive features: 

• depends on a single scale μ = 1/L

• is an inherently non-perturbative definition

• the SF b.c.’s exclude gluon zero modes; coupling may be computed even at small boxes L3

• relation between S.F. and MS has been worked out in PT

ḡ2(L) =
[∂Γ0

∂η
/
∂Γ
∂η

]

η=0

αSF(L) = αMS(µ) +
[ 11
2π

ln(µL) − 1.2556
]
αMS(µ)2



Step scaling function

• we define (in the continuum) a discrete version of the β-function, the step scaling function σ

• it describes the change of the coupling between an (inverse) scale L and an an (inverse) scale 
sL, for s integer (typically s=2)

• this is a discrete form of the Callan-Symanzik beta function

• differentiate both sides w.r.t. μ d/dμ = - L d/dL and use above 

ḡ2(L) = u ḡ2(s L) = u′ σ(s, u) = u′

σ(s, u) = u + 2b0 ln(s) u2 + · · ·

• so if we know the ssf, we can reconstruct the Callan-Symanzik function recursively

• the step scaling function in PT is given by

β(ḡ) = µ
∂ḡ

∂µ

β[
√

σ(s, u)] = β[
√

u]
√

u

σ(s, u)
dσ(s, u)

du



Step scaling function

• we next define (in the continuum) a discrete version of the β-function, the step scaling function

• it describes the change of the coupling between an (inverse) scale L and an an (inverse) scale 
sL, for s integer (typically s=2)

•  this setup is suitable for a NP computation of the coupling / step scaling function

• in practice we compute NP-ly the step scaling function in a range of couplings umin and umax, 
corresponding to two scales μmax and μmin; so we obtain the RG-running between them

• the two scales are separated by a power of s, i.e. μmax = sk μmin, typically s=2

ḡ2(L) = u ḡ2(s L) = u′ σ(s, u) = u′

• the gauge coupling and step scaling function calculations requires choosing a regularization: 
lattice is the obvious choice

• on the lattice it has an additional dependence on the lattice resolution L/a 

Σ(s, u, a/L) = u′ σ(s, u) = lim
a→0

Σ(s, u, a/L)



Step scaling function

• lattice gauge action of choice is the Wilson plaquette one, with some care at the t-boundaries

• lattice fermion action of choice is Wilson, with some care at the t-boundaries

• proceed as follows:

ḡ2(L) =
[∂Γ0

∂η
/
∂Γ
∂η

]

η=0

★ choose a lattice with L/a points in each direction

★ tune bare coupling so that the renormalized 
coupling has a fixed value

★ at the same bare coupling, compute the 
renormalized coupling on a lattice twice as big 2L/a

★ repeat this for several resolutions L’/a, L’’/a

★ extrapolate to the continuum

g2
0 → ḡ2(L) = u

g2
0 → ḡ2(2L) = u′

u′ = Σ(2, u, a/L)

σ(s, u) = lim
a→0

Σ(s, u, a/L)



g2
0 → ḡ2(L) = u

g2
0 → ḡ2(2L) = u′

u′ = Σ(2, u, a/L)

σ(s, u) = lim
a→0

Σ(s, u, a/L)

 M.Della Morte et al. Nucl.Phys.B713(2005)378

Step scaling function: results for Nf = 2



g2
0 → ḡ2(L) = u

g2
0 → ḡ2(2L) = u′

u′ = Σ(2, u, a/L)

σ(s, u) = lim
a→0

Σ(s, u, a/L)

 M.Della Morte et al. Nucl.Phys.B713(2005)378

• an expression of the continuum ssf σ(u), as a function of the coupling u, is obtained by 
fitting the points above; so we know the ssf in a range [umin, umax], corresponding to a 
range of (still unknown!) scales [μmax, μmin] ( or equivalently [Lmin, Lmax] )

• NB: the agreement/disagreement between PT/NP is a scheme-dependent observation

Step scaling function: results for Nf = 2



 M.Della Morte et al. Nucl.Phys.B713(2005)378

Step scaling function: results for Nf = 2

• an expression of the continuum ssf σ(u), as a function of the coupling u, is obtained by fitting 
the points above; so we know the ssf in a range [umin , umax], corresponding to a range of (still 
unknown!) scales [μmax , μmin] (or equivalently [Lmin , Lmax])

• NB: the agreement between PT/NP at low couplings is scheme dependent!!



g2
0 → ḡ2(L) = u

g2
0 → ḡ2(2L) = u′

u′ = Σ(2, u, a/L)

σ(s, u) = lim
a→0

Σ(s, u, a/L)

 M.Della Morte et al. Nucl.Phys.B713(2005)378

• an expression of the continuum ssf σ(u), as a function of the coupling u, is obtained by 
fitting the points above; so we know the ssf in a range [umin, umax], corresponding to a 
range of (still unknown!) scales [μmax, μmin] ( or equivalently [Lmin, Lmax] )

• NB: the agreement/disagreement between PT/NP is a scheme-dependent observation

Step scaling function: results for Nf = 2



• knowing NPly ssf σ(u), we can now compute NP-ly the running strong coupling:

• on the previous plot of σ(u) vs. u, choose a number of discrete couplings:

Gauge coupling: results for Nf = 2

u1 = ḡ2(Lmin) ↔ ΛSF

µmax

u2 = ḡ2(2Lmin) ↔ ΛSF

µmax/2
=

µmax

µmax/2
ΛSF

µmax

u3 = ḡ2(4Lmin) ↔ ΛSF

µmax/4
=

µmax/2
µmax/4

µmax

µmax/2
ΛSF

µmax

· · · · · · · · ·

uk = ḡ2(2kLmin = Lmax) ↔ ΛSF

µmin
=

2µmin

µmin

4µmin

2µmin
· · · µmax/2

µmax/4
µmax

µmax/2
ΛSF

µmax

known from PT

ΛSF

µmax
= exp

[
− 1

2b0ḡ2(µmax)

] [
b0ḡ

2(µmax)
]−b1/(2b20)

exp
[
−

∫ ḡ(µmax)

0
dg

[ 1
β(g)

+
1

b0g3
− b1

b2
0g

]]

u1= umin



• knowing NPly ssf σ(u), we can now compute NP-ly the running strong coupling:

• on the previous plot of σ(u) vs. u, choose a number of discrete couplings:

Gauge coupling: results for Nf = 2

u1 = ḡ2(Lmin) ↔ ΛSF

µmax

u2 = ḡ2(2Lmin) ↔ ΛSF

µmax/2
=

µmax

µmax/2
ΛSF

µmax

u3 = ḡ2(4Lmin) ↔ ΛSF

µmax/4
=

µmax/2
µmax/4

µmax

µmax/2
ΛSF

µmax

· · · · · · · · ·

uk = ḡ2(2kLmin = Lmax) ↔ ΛSF

µmin
=

2µmin

µmin

4µmin

2µmin
· · · µmax/2

µmax/4
µmax

µmax/2
ΛSF

µmax

known from PT

iteratively work out couplings u(L) and 
u(2L) for each pair of successive scales μ 

and  μ/2 from ssf σ(u)

thus we obtain the correspondence 
between u(L) and ΛSF/μ (with μ =1/L ) for 

the whole range of scales μ



• knowing NPly ssf σ(u), we can now compute NP-ly the running strong coupling:

• on the previous plot of σ(u) vs. u, choose a number of discrete couplings:

Gauge coupling: results for Nf = 2

u1 = ḡ2(Lmin) ↔ ΛSF

µmax

u2 = ḡ2(2Lmin) ↔ ΛSF

µmax/2
=

µmax

µmax/2
ΛSF

µmax

u3 = ḡ2(4Lmin) ↔ ΛSF

µmax/4
=

µmax/2
µmax/4

µmax

µmax/2
ΛSF

µmax

· · · · · · · · ·

uk = ḡ2(2kLmin = Lmax) ↔ ΛSF

µmin
=

2µmin

µmin

4µmin

2µmin
· · · µmax/2

µmax/4
µmax

µmax/2
ΛSF

µmax

known from PT

 M.Della Morte et al. Nucl.Phys.B713(2005)378

• NB: again the scale μ is expressed in units of 
the (still unknown) ΛSF; we need to know μ  
in physical units e.g. GeV



• all results obtained so far are “purely field theoretic”; i.e. they have been obtained from 
the massless QCD action, without any external (experimental) input

• this is the reason that everything so far involved dimensionless quantities

• in order to make contact with the real world, we need to know μmin (or ΛSF) in 
physical units

• strategy:

• for a series of lattice resolutions Lmax/a, Lmax/a’, Lmax/a’’, ... , tune the bare couplings 
g0, g0’, g0’’, ... so as to have the same fixed renormalized coupling gR(Lmax) = const.

• for these bare couplings compute some suitable physical quantity; e.g. the proton 
mass amp, a’mp, a’’mp, ... 

• the products [Lmax/a]×[amp], extrapolated to the continuum for all lattice spacings 
a, a’, a’’, ... , gives us Lmax mp

• use the physical (expt.lly known) value of mp to get Lmax (i.e. μmin) and thus ΛSF

• for historical (quenching) and practical reasons, another observable known as the 
Sommer parameter r0 is used instead of mp

Physical scale



• the parameter r0 is the physical distance at which the static quark-antiquark potential 
F(r) has a chosen fixed value: 

Physical scale

dimensionless quantity

• phenomenological models suggest that 
for [ r2 F(r) ] = 1.65, we get r0 = 0.5 fm 

• the rest is similar to the procedure described previously, based on the proton mass; 
instead of mp, we have I/r0

• so we are in a position to compute μmin (or ΛSF) in physical units

• however, people prefer to see 

• this implies that we have to match the SF scheme to MS

[
r2 F (r)]r=r0 = 1.65

ΛMS



• given two schemes “1” and “2”, the corresponding renormalized couplings are 
connected, to all orders in PT by the relation

• recall that the corresponding Λ parameters are written as

• from these expressions we can work out the ratio, valid to all orders in PT

Λ-dependence of renormalization scheme

Λ1,2 = lim
µ0→∞

µ0 exp
[
− 1

2b0ḡ2
1,2(µ0)

] [
b0ḡ

2
1,2(µ0)

]−b1/(2b20)

Λ1

Λ2
= exp

[ c1

2b0

]

• NB: only the first perturbative coefficient is necessary!!

• the scheme matching has been worked out between SF and MS
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ΛNf =2

MS
= 245(16)(16)MeV with r0 = 0.5fm

ḡ2
1 = ḡ2

2 [1 + c1 ḡ2
2 + c2 ḡ4

2 + c3 ḡ6
2 · · · ]



Schrödinger Functional 
renormalization scheme:  

quark mass



• having dealt with the gauge coupling we turn to the other QCD fundamental 
parameters, i.e. the quark masses 

• they are “unphysical” (i.e. non-observable) field theoretic quantities, which depend on 
the renormalization scale 

• their RG-running is governed by the anomalous dimension γ

• in a mass independent scheme, γ(gR) depends on the number of flavours but not on 
the quark masses

• it is defined as:

• and has the following perturbative expansion:

Quark mass RG-running and the SF

mR γ(gR) = µ
∂mR

∂µ

γ(g) = −g2
[
d0 + d1 g2 + d2 g4 + · · ·

]

universald0 =
8

(4π)2 renormalization scheme

dependent



• the quark mass RG equation is integrated between a minimum and a maximal energy 
scale; the former is taken to infinity (i.e. coupling to zero)

• this procedure is similar to that exposed in detail for the gauge coupling, and gives rise 
to a constant quantity, with the dimensions of mass

Quark mass RG-running and the SF

MRGI = mR(µ)
[
2b0 g2

R(µ)
]−d0/(2b0)

exp
[
−

∫ gR(µ)

0
dg

[γ(g)
β(g)

− d0

b0g

]]

MRGI ≡ lim
µ0→∞

mR(µ0)
[
2b0 g2

R(µ0)
]−d0/(2b0)

regular in the limit gR(μ0) → 0 

• the ratio of the RGI mass MRGI to the renormalized mass mR(μ) is a field theoretic 
quantity, independent of any physical input

• it depends on the flavour number, but not on the quark mass value

• using the definition of the RGI mass for two distinct schemes, it can be shown that it is 
a scheme independent quantity



• the definition of the quark mass step scaling function is the ratio of the renormalized 
masses at two consecutive scales, at 

Quark mass RG-running and the SF

this is how it is computed

• computation performed at zero quark 
mass (i.e. ssf defined in the chiral 
limit)

• it follows recursive logic of the 
coupling ssf computation

• the lattice ssf Σp(u,L) is computed at 
several renormalized couplings and 
extrapolated to the continuum limit

• the Nf =  2 result is shown

at same renorm. coupling u g0
2
 corresponding to  u
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σP (s, u) =
mR(µ)

mR(µ/s)
=

Z−1
P (aL) m0(g0)

Z−1
P (asL) m0(g0)

=
Z−1

P (aL)
Z−1

P (asL)



Quark mass RG-running and the SF

• knowing NPly ssf σp(u), we can now compute NP-ly the running strong coupling

known from ssf σp(u)

umin

 M.Della Morte et al. Nucl.Phys.B729(2005)117

M

mR(µmin)
= 1.297(16) Nf = 2

M

mR(µmin)
=

mR(2µmin)
mR(µmin)

mR(4µmin)
mR(2µmin)

· · · mR(µmax/2)
mR(µmax/4)

mR(µmax)
mR(µmax/2)

M

mR(µmax)

M

mR(µmax)
=

[
2b0ḡ

2(µmax)
]−d0/(2b20)

exp
[
−

∫ ḡ(µmax)

0
dg

[γ(g)
β(g)

− d0

b0g

]]



Quark mass RG-running and the SF

• now the RGI quark mass of a given flavour f can be computed

scheme independent scheme dependent
scale dependent

regularization 
dependent

scale dependent

Mf =
Mf

mR(µmin)
mR(µmin) =

Mf

mR(µmin)
lim
a→0

Z−1
P (aµmin, g0) mPCAC(g0)

regularization 
dependent

scale dependent

known in the C.L.
must be 

computed NPly
flavour 

dependence• the bare PCAC quark mass is defined as

• for SF correlation functions:

mPCAC =
ZA ∂0 fA

2 fP

fP = 〈 P (x) O(0) 〉
fA = 〈 A0(x) O(0) 〉 boundary source composite field with 

pseudoscalar quantum numbers 



Quark mass RG-running and the SF

• now the RGI quark mass of a given flavour f can be computed

scheme independent scheme dependent
scale dependent

regularization 
dependent

scale dependent

Mf =
Mf

mR(µmin)
mR(µmin) =

Mf

mR(µmin)
lim
a→0

Z−1
P (aµmin, g0) mPCAC(g0)

regularization 
dependent

scale dependent

known in the C.L.
must be 

computed NPly
flavour 

dependence• the SF renormalization condition for the 
pseudoscalar density is:

tree level 
cancels boundary 

quark field 
renormalization 

ZP (Lmax) fP (Lmax/2)√
f1

= T.L.
[fP (Lmax/2)√

f1

]



Quark mass RG-running and the SF

• now the RGI quark mass of a given flavour f can be computed

scheme dependent
scale dependent

Mf =
Mf

mR(µmin)
mR(µmin) =

Mf

mR(µmin)
lim
a→0

Z−1
P (aµmin, g0) mPCAC(g0)

must be 
computed NPly

flavour 
dependence

• simulations at the physical up/down quark masses are a daunting task

• simulations in the mass range [ ms/4 , mc ] are nowadays feasible

• a nice approach is to define a reference quark mass (approximately ms/2) for which a 
“Kaon” consisting of two degenerate valence quarks weighs 495 MeV (the “physical” value)

• this “world” is a two degenerate flavour (Nf = 2) theory

• the previous SF procedure, once the bare quark mass is tuned to the reference quark mass 
etc., gives Mref = 72 (3) (13) MeV

• next use the chiral PT result Ms = 48/25 Mref, to obtain Mstrange = 138 (5) (26) MeV
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Recapitulation of RG-running with the SF

renormalization 
scale (energy)

hadronic scheme

gR ↔ mphys
p

mu/d
R ↔ mphys

π

Schrödinger Functional scheme

n recursive steps

µ = 1/Lmax

Lmax ∼ 0.5fm

µ = 2n/Lmax

NP-regime: compute hadronic 
ma t r i x e l emen t s and SF 
renorm. constants

PT-regime: compute RGI quantities (ΛQCD, MRGI); use 
them in high-energy phenomena (jet Physics)


